我有一个对象类型为日期的列
> df['created_at_first']
那就是结果
created_at_first
2018-07-01 02:08:06
2018-06-05 01:39:30
2018-05-16 21:18:48
我想为年,月,日,小时创建新列。 所以我得到这样的东西:
year month day hour
2018 07 01 02
2018 06 05 01
2018 05 16 21
我该如何管理?
答案 0 :(得分:5)
也许:
df['created_at_first'] = pd.to_datetime(df['created_at_first'])
df['year'] = df['created_at_first'].dt.year
df['month'] = df['created_at_first'].dt.month
df['day'] = df['created_at_first'].dt.day
df['hour'] = df['created_at_first'].dt.hour
答案 1 :(得分:2)
一种灵活的方法是将operator.attrgetter
与pd.concat
一起使用。通过这种方法,您可以指定任意属性列表,然后通过pd.Series.dt
访问器提取这些属性。
fields = ['year', 'month', 'day', 'hour']
res = pd.concat(attrgetter(*fields)(df['dates'].dt), axis=1, keys=fields)
print(res)
year month day hour
0 2018 7 1 2
1 2018 6 5 1
2 2018 5 16 21
设置
import pandas as pd
from operator import attrgetter
df = pd.DataFrame({'dates': ['2018-07-01 02:08:06',
'2018-06-05 01:39:30',
'2018-05-16 21:18:48']})
df['dates'] = pd.to_datetime(df['dates'])
答案 2 :(得分:1)
DatetimeIndex
将有助于获得所需的结果
created_at_first=["2018-07-01 02:08:06","2018-06-05 01:39:30","2018-05-16 21:18:48"]
import pandas as pd
df=pd.DataFrame({'ColumnName':created_at_first})
df['year'] = pd.DatetimeIndex(df['ColumnName']).year
df['month'] = pd.DatetimeIndex(df['ColumnName']).month
df['day'] = pd.DatetimeIndex(df['ColumnName']).day
df['hour'] = pd.DatetimeIndex(df['ColumnName']).hour
官方文件:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DatetimeIndex.html
输出:
columnName year month day hour
0 2018-07-01 02:08:06 2018 7 1 2
1 2018-06-05 01:39:30 2018 6 5 1
2 2018-05-16 21:18:48 2018 5 16 21
答案 3 :(得分:1)
您可以尝试使用strftime
,然后按照'-'
函数中给出的方法strftime('%Y-%m-%d-%H')
进行拆分。代码:
created_at_first=["2018-07-01 02:08:06","2018-06-05 01:39:30","2018-05-16 21:18:48"]
df=pd.DataFrame({'ColumnName':created_at_first})
df['ColumnName']= pd.to_datetime(df['ColumnName'])
df2 = pd.DataFrame(df.ColumnName.dt.strftime('%Y-%m-%d-%H').str.split('-').tolist(),
columns=['Year','Month','Day','Hour'],dtype=int)
df2
Year Month Day Hour
0 2018 07 01 02
1 2018 06 05 01
2 2018 05 16 21
如果要在单个数据框中使用所有列,请在pd.concat()
和axis=1
中使用pd.concat((df,df2),axis=1)
ColumnName Year Month Day Hour
0 2018-07-01 02:08:06 2018 07 01 02
1 2018-06-05 01:39:30 2018 06 05 01
2 2018-05-16 21:18:48 2018 05 16 21
。
public class ValidateActionParametersAttribute : ActionFilterAttribute
{
public override void OnActionExecuting(ActionExecutingContext context)
{
var descriptor = context.ActionDescriptor as ControllerActionDescriptor;
if (descriptor != null)
{
var parameters = descriptor.MethodInfo.GetParameters();
foreach (var parameter in parameters)
{
var argument = context.ActionArguments[parameter.Name];
EvaluateValidationAttributes(parameter, argument, context.ModelState);
}
}
base.OnActionExecuting(context);
}
private void EvaluateValidationAttributes(ParameterInfo parameter, object argument, ModelStateDictionary modelState)
{
var validationAttributes = parameter.CustomAttributes;
foreach (var attributeData in validationAttributes)
{
var attributeInstance = CustomAttributeExtensions.GetCustomAttribute(parameter, attributeData.AttributeType);
var validationAttribute = attributeInstance as ValidationAttribute;
if (validationAttribute != null)
{
var isValid = validationAttribute.IsValid(argument);
if (!isValid)
{
modelState.AddModelError(parameter.Name, validationAttribute.FormatErrorMessage(parameter.Name));
}
}
}
}
}