Matlab:程序返回垃圾值,帮助正确执行卡尔曼滤波器和参数估计

时间:2015-03-19 20:07:35

标签: matlab implementation kalman-filter

我已经根据论文Parameter Estimation for Linear dynamical system实现了具有期望最大化的卡尔曼平滑。所有符号都基于本文。 该模型是IIR(AR(2))过滤器

y(t) =  0.195 *y(t-1) - 0.95*y(t-2) + w(t) 

状态空间表示:

x(t+1) = a^Tx(t) + w(t)

y(t) = C(t) + v(t)

状态空间模型:

x(t+1) = Ax(t) + w(t)

y(t) = Cx(t) + v(t)

w(t) = N(0,Q) is the driving process noise 

v(t) = N(0,R)  is the measurement noise

将AR模型重写为状态空间表示:

SS_AR

有人可以指出我做错的地方,以便代码有效。我已经跟踪了https://github.com/cswetenham/pmr/blob/master/toolboxes/lds/lds.m#L110

中的大部分序列和结构

(1)Eq(26)需要$ x0 $的初始值。我向x0 = mean(x,2)函数提供了Predict。我对此有疑问。将x0initx作为观察y的平均值,它会给出一个标量,或者它是2个值(2行乘1列),因为状态空间是AR(2) 。我不确定这一点。

(2)如果我采用x0 = mean(x,2)并在卡尔曼滤波后对代码进行评论,则会给出状态估计的正确结果。只有平滑才能使参数估计不正确。这是不正确的,因为新的x0 = initx = x1sum/N成为标量,而初始化它是一个2乘1的矩阵,其中每一行都是状态。

%%% Matlab script to simulate data and process usiung Kalman for the state
%%% estimation of AR(2) time series.:  y(t) =  0.195 *y(t-1) - 0.95*y(t-2) + excite_input(t);
% Linear system representation
% x_n+1 = A x_n + Bw_n
% y_n = Cx_n + v_n
% w = N(0,Q); v = N(0,R)
clc
clear all

T = 100;
order = 2;
  a1 = 0.195;
  a2 = -0.95;

A = [ a1  a2;
      1 0 ];
C = [ 1 0 ];
B = [1;
      0];


 x =[ rand(order,1) zeros(order,T-1)];% a sequence of 100 2-d vectors



sigma_2_w =1;
sigma_2_v = 0.01;



Q=eye(order);
P=Q;



%Simulate the steady state covariance matrix P
%P = A*P*A' + B*sqrt(sigma_2_w)*B';
 P = dlyap(A,B*B');

%Simulate AR model time series, x;


sqrtW=sqrtm(sigma_2_w);
excite_input=B*sqrtW*randn(1,T);
for t = 1:T-1
    x(:,t+1) = A*x(:,t) + excite_input(t+1);
end

%noisy observation

y = C*x + sqrt(sigma_2_v)*randn(1,T);



R  = sigma_2_v ;

z = y;
%X= x';
 x0=mean(x,2);
 YHAT = zeros(1,T);
 XHAT = zeros(2,T+1);

LL=[];
converged = 0;
previous_loglik = -Inf;
Y =y;
z = Y;


N = T;
max_iter = 500;
num_iter = 0;
initx = x0;
% V1 = var(initx);
loglik = 0;
V1 = P;
 while ~converged & (num_iter <= max_iter)
  initx = x0;

  k = length(initx);
  I=eye(k);
  xtt=zeros(2,T);   Vtt=zeros(2,2,T); xtt1=zeros(2,T); Vtt1=zeros(2,2,T); xhat_s = zeros(2,T);
  xtT=zeros(2,T); VtT=zeros(2,2,T); J=zeros(2,2,T); Vtt1T=zeros(2,2,T);  Ptsum = 0;
  x1sum = 0;
  P1sum = 0;
  A1=zeros(k);
  A2=zeros(k);
  XPred = zeros(2,T);
  Ptsum=zeros(k);
  xhat = zeros(2,1);
  Pcov = zeros(k,k);
  Kcur = 0;
  YX = 0;

%KAlman Filtering

for i =1:T

[xpred, Ppred] = predict(x0,V1, A, Q);
[nu, S] = innovation(xpred, Ppred, z(i), C, R);
[xnew, P, yhat, KalmanGain] = innovation_update_LDS(A, xpred, Ppred, V1, nu, S, C);
YHAT(i) = yhat;
Phat(i) = sqrt(C*P*C');
xtt(:,i) = xnew;  %xtt is the filtered state
Vtt(:,:,i) = P; %filtered covariance
Vtt1(:,:,i) = Ppred;
XPred(:,i) = A*xtt(:,i);


end 

KC = KalmanGain*C;

% 
% %Kalman Smoothing
% 
% 

KT = KalmanGain;

% %backward pass gets you E[x(t)|y(1:T)] from E[x(t)|y(1:t)]
t=T;
xtT(:,t) = xtt(:,t);
VtT(:,:,t) = Vtt(:,:,t);


% %SMOOTHING
 for t=(T-1):-1:1
     Vtt1(:,:,t) = A*Vtt(:,:,t)*A' + Q;
     J(:,:,t) = Vtt(:,:,t)*A'*inv(Vtt1(:,:,t+1)); %Eq(31)
     xtT(:,t) =  xtt(:,t) + ((xtT(:,t+1)- XPred(:,t))'*J(:,:,t))';  % Eq(32) xsmooth  modified the transpose
     VtT(:,:,t) = Vtt(:,:,t) + J(:,:,t)*(VtT(:,:,t+1)-Vtt1(:,:,t+1))*J(:,:,t)';  % Eq(33) Vsmooth or Psmooth
     Pt=VtT(:,:,t) + xtT(:,t)*xtT(:,t)'; 
     Ptsum=Ptsum+Pt;
     YX = YX+Y(:,t)'*xtT(:,t);  %For Eq(14)
      x1sum = x1sum + xtT(:,1);
    %  gama2 = gama2 + Pt - xtT(:,1)*xtT(:,1)' - VtT(:,:,1);

end
% Pt = VtT + xtT'*xtT;

% Pt = VtT(:,:,t) + xtT(:,t)'*xtT(:,t);  %P_t,t-1 = V_t,t-1^T + x_t^T * x_t^T'


 Sum_Pt_2T= Ptsum - Pt;  %A3  gama2
 A2= Ptsum + A2; %gama1

xhat_s = xtT; %smoothed estimate of x(t)


t= T;
 Pcov=(eye(2)-KC)*A*Vtt(:,:,t-1);
 A1=A1+Pcov+xtT(:,t)'*xtT(:,t-1);


for t= (T-1):-1:2
 Pcov =(Vtt(:,:,t) + J(:,:,t)*(Pcov - A*Vtt(:,:,t)))*J(:,:,t-1)';  %Eq(34)
 A1 = A1+Pcov+xtT(:,t)'*xtT(:,t-1);
 end; 

Rterm = (Y - C*xtt);
R_result = 0.5*Rterm' * inv(R)* Rterm;
R_sum_result = sum(sum(R_result));

Qterm = xtt(:,2:T)-(A*xtt(:,1:(T-1)));
Q_result = 0.5*Qterm' * inv(Q) * Qterm;
Q_sum_result = sum(sum(Q_result));

V1term = (xtt(:,1) -initx);
V1_result = 0.5 * V1term' * inv(V1) * V1term;

loglik_t = - R_sum_result - 0.5*T*log(det(R)) - Q_sum_result - 0.5*(T-1)*log(det(Q)) -  V1_result - 0.5*log(det(V1)) - 0.5*T*log(2*pi);



%STEP 2 Re-estimate B,Q,R,initx,initV1 via ML given x(t) estimate
 C=YX'*inv(Ptsum)/N;
 A=A1*inv(A2); 
 R1term = sum(Y.*Y)'/(T);
 R2term = diag(C*YX)/T;
 R = R1term - R2term;  % R = (1/T)*sum(Y.*Y - C.*xhat_s.*Y');
 Q=(1/(T-1))*diag(diag((Sum_Pt_2T-A*(A1')))); 
initx = x1sum/N;
x0 = initx;
V1 = Pt(:,:,1) - initx*initx';
  LL=[LL loglik_t];
  num_iter = num_iter+1
converged = em_converged(loglik, previous_loglik); %subfunction below
previous_loglik = loglik_t;


 end %while not converged
A

C
Q
R

function [xpred, Ppred] = predict(x0,P, A, Q)
xpred = A*x0;
Ppred = A*P*A' + Q;
end

function [nu, S] = innovation(xpred, Ppred, y, C, R)
nu = y - C*xpred; %% innovation

S = R + C*Ppred*C'; %% innovation covariance

end

function [xnew, Pnew, yhat, K] = innovation_update_LDS(A,xpred, Ppred,V1, nu, S, C)
% invP=inv(S);
% K = Ppred*C'*invP; %% Kalman gain
% xnew = xpred + K*nu; %% new state
% Pnew = Ppred - Ppred*K*C; %% new covariance
% yhat = C*xnew; % Observed value at time step i, assuming inferred state xnew
% xhat = A*xnew + K*nu;

K = Ppred*C'*inv(S); %% Kalman gain 2 rows 1 col (scalar
xnew = xpred + K*nu; %% new state
Pnew = Ppred - Ppred*K*C; %% new covariance
 yhat = C*xnew;
VVnew = (eye(2) - K*C)*A*V1;

end

function converged = em_converged(loglik, previous_loglik, threshold)
% EM_CONVERGED Has EM converged?
% [converged, decrease] = em_converged(loglik, previous_loglik, threshold)
%
% We have converged if
% |f(t) - f(t-1)| / avg < threshold,
% where avg = (|f(t)| + |f(t-1)|)/2 and f is log lik.
% threshold defaults to 1e-4.
% This stopping criterion is from Numerical Recipes in C p42
if nargin < 3
threshold = 1e-4;
end
%log likelihood should increase
if loglik - previous_loglik < -1e-3 % allow for a little imprecision
fprintf(1, '******likelihood decreased from %6.4f to %6.4f!\n', previous_loglik,loglik);
end
delta_loglik = abs(loglik - previous_loglik);
avg_loglik = (abs(loglik) + abs(previous_loglik) + eps)/2;
if (delta_loglik / avg_loglik) < threshold
converged = 1
else converged = 0
end 

1 个答案:

答案 0 :(得分:3)

在查看kalman代码时,我总是首先开始的是更新步骤,特别是协方差更新。在您的代码中innovation_update_LDS

您使用的标准表单是Pnew = Ppred - Ppred*K*C; %% new covariance这是不正确的,它应该是Pnew = Ppred - K*C*Ppred或更常见Pnew = (I - K*C)*Ppred;其中I=eye(len(K));

除此之外,我也绝不会使用这种形式的等式。使用&#34; Josephs form&#34;

Pnew = (eye(2) - K*C) * Ppred * (eye(2)-K*C)' + K*R*K'; 

这种形式在计算上是稳定的。它保证矩阵将保持对称。使用标准形式这是不可保证的,它与计算机中的舍入误差有关,但经过多次迭代后,或者当使用具有大量特征的状态空间时,协方差矩阵变为非对称并导致巨大错误并最终导致过滤器根本不遵循预期的轨迹。

在你的%KAlman过滤部分中,似乎还有一些错误。我认为它看起来应该更像这个

%KAlman Filtering

for i =1:T
    if (i==1)
        [xpred, Ppred] = predict(x0,V1, A, Q);
    else
        [xpred, Ppred] = predict(xtt(:,i-1),Vtt(:,:,i-1), A, Q);
    end
    [nu, S] = innovation(xpred, Ppred, z(i), C, R);
    [xnew, Pnew, yhat, KalmanGain] = innovation_update_LDS(A, xpred, Ppred, V1, nu, S, C, R);
    YHAT(i) = yhat;
    Phat(i) = sqrt(C*Pnew*C');
    xtt(:,i) = xnew;  %xtt is the filtered state
    Vtt(:,:,i) = Pnew(:,:); %filtered covariance
end

可能有更多错误,但这是我有时间找到的。祝你好运