具有扩展范围的浮点类型

时间:2015-03-19 08:05:29

标签: c floating-point gpgpu

我需要在C中表示非常小的订单(例如,0.6745 * 2 ^ { - 3000})的浮点数。这种支持必须是平台无关的(适用于CPU和GPU) CUDA)。不需要有意义的大长度。 我不能使用高精度库(GMP,MPFR等),因为它们不能在GPU上运行。另一方面,CUDA不支持long double类型。有什么解决方案吗?是否有可能以某种方式实现自定义浮点类型?

3 个答案:

答案 0 :(得分:1)

您可以在日志空间中工作,即将每个数字表示为e x ,其中x是您的标准浮点类型:

  • 可以使用log-sum-exp trick进行加/减(以及更一般的求和),即

    • e x + e y = e x (1 + e yx )= e x + log(1 + exp(yx))
  • 乘法/除法成为加法/减法

    • e x ×e x = e x + y
  • 提升权力相当简单

    • (e x )^(e x )= e x exp(y)

答案 1 :(得分:0)

我编写了简单的解决方案(使用this工作):

#include <math.h>
#include <stdint.h>

#define DOUBLE_PRECISION 53

/*  DOUBLE PRECISION FLOATING-POINT TYPE WITH EXTENDED EXPONENT     */

typedef struct Real {
    double sig;     //significand
    long exp;       //binary exponent
} real;

/*  UNION FOR DIVISION DOUBLE BY 2^POW                              */

union DubleIntUnion
{
    double      dvalue;
    uint64_t    ivalue;
};


/*  PLACE SIGNIFICAND OF REAL NUMBER IN RANGE [1, 2)            */

inline real adjust(real x){
    real y;
    y.exp = x.exp;
    y.sig = x.sig;
    if(y.sig == 0){
        y.exp = 0;
    } else if (fabs(y.sig) >= 2.0){
        y.exp = y.exp + 1;
        y.sig = y.sig / 2;
    } else if(fabs(y.sig) < 1){
        y.exp = y.exp - 1;
        y.sig = y.sig * 2;
    }
    return y;
}

/*  PLACE SIGNIFICAND OF REAL NUMBER IN RANGE [1, 2) FOR TINY NUMBER    */
/*  FOR EXAMPLE, AFTER SUBTRATION OR WHEN SET REAL FROM DOUBLE          */

inline real adjusttiny(real x){
    real y;
    y.exp = x.exp;
    y.sig = x.sig;
    while(1){
        x.exp = y.exp;
        x.sig = y.sig;
        y = adjust(x);
        if(x.exp == y.exp && x.sig == y.sig)
            break;
    }
    return y;
}

real set(double x){
    real y;
    real z;
    y.sig = x;
    y.exp = 0;
    return adjusttiny(y);
};

real set(real x){
    real y;
    y.exp = x.exp;
    y.sig = x.sig;
    return y;
};

/*  ARITHMETIC OPERATIONS   */

//divide x by 2^pow. Assert that x.exp - pow > e_min
inline double div2pow(const double x, const int pow)
{
    DubleIntUnion diu;
    diu.dvalue = x;
    diu.ivalue -= (uint64_t)pow << 52;      // subtract pow from exponent
    return diu.dvalue;
}

//summation
inline real sum(real x, real y){            
    real sum;
    int dexp = abs(x.exp - y.exp);

    if (x.exp > y.exp){
        sum.exp = x.exp;
        if(dexp <= DOUBLE_PRECISION){           
            sum.sig = div2pow(y.sig, dexp);     // divide y by 2^(x.exp - y.exp)
            sum.sig = sum.sig + x.sig;
        } else sum.sig = x.sig;
    } else if (y.exp > x.exp){
        sum.exp = y.exp;
        if(dexp <= DOUBLE_PRECISION){           
            sum.sig = div2pow(x.sig, dexp);     // divide x by 2^(y.exp - x.exp)
            sum.sig = sum.sig + y.sig;
        } else
            sum.sig = y.sig;
    } else {
        sum.exp = x.exp;
        sum.sig = x.sig + y.sig;
    }
    return adjust(sum);
}

//subtraction
inline real sub(real x, real y){            
    real sub;
    int dexp = abs(x.exp - y.exp);

    if (x.exp > y.exp){
        sub.exp = x.exp;
        if(dexp <= DOUBLE_PRECISION){           
            sub.sig = div2pow(y.sig, dexp); // divide y by 2^(x.exp - y.exp)
            sub.sig = x.sig - sub.sig;
        } else sub.sig = x.sig;
    } else if (y.exp > x.exp){
        sub.exp = y.exp;
        if(dexp <= DOUBLE_PRECISION){           
            sub.sig = div2pow(x.sig, dexp); // divide x by 2^(y.exp - x.exp)
            sub.sig = sub.sig - y.sig; 
        } else sub.sig = -y.sig;
    } else {
        sub.exp = x.exp;
        sub.sig = x.sig - y.sig;
    }
    return adjusttiny(sub);
}

//multiplication
inline real mul(real x, real y){            
    real product;
    product.exp = x.exp + y.exp;
    product.sig = x.sig * y.sig;
    return adjust(product);
}

//division
inline real div(real x, real y){            
    real quotient;
    quotient.exp = x.exp - y.exp;
    quotient.sig = x.sig / y.sig;
    return adjust(quotient);
}

乍一看工作正常。也许我错过了什么或者可以加速实施?

如何在这些数字上实现floorceil函数?

答案 2 :(得分:0)

如果您需要非常大的指数,那么symmetric level-index arithmetic可能符合您的需求。但是,准确度难以预测,因此您可能需要更高的精度来补偿LI值。提高精度的一种常用方法是double-double arithmetic,这在CUDA上也很常用。

CUDA上还有许多多精度库,如CUMP

更多信息:

https://devtalk.nvidia.com/default/topic/512234/gpump-multiple-precision-arithmetic-on-the-gpu-/
http://individual.utoronto.ca/haojunliu/courses/ECE1724_Report.pdf
http://gcl.cis.udel.edu/publications/meetings/090709_ARLvisit/090709_Library4GPU.pdf
http://www.cra.org/Activities/craw_archive/dmp/awards/2009/Padron/proposal_omar_dreu_09.pdf