使用sklearn.AgglomerativeClustering绘制树状图

时间:2015-03-18 16:07:02

标签: python plot cluster-analysis dendrogram

我正在尝试使用children_提供的AgglomerativeClustering属性来构建树形图,但到目前为止,我运气不好。我无法使用scipy.cluster,因为scipy中提供的凝聚聚类缺少一些对我很重要的选项(例如指定聚类数量的选项)。我真的很感激那里的任何建议。

    import sklearn.cluster
    clstr = cluster.AgglomerativeClustering(n_clusters=2)
    clusterer.children_

5 个答案:

答案 0 :(得分:11)

这是一个simple function,用于从sklearn中获取层次聚类模型,并使用scipy dendrogram函数绘制它。在sklearn中通常不直接支持图形函数。您可以找到与此plot_dendrogram代码段here的提取请求相关的有趣讨论。

我要澄清你描述的用例(定义簇的数量)在scipy中可用:在使用scipy的linkage执行层次聚类之后,你可以将层次结构切割成任意数量的簇希望将fclustert参数和criterion='maxclust'参数中指定的簇数一起使用。

答案 1 :(得分:9)

使用凝聚聚类的scipy实现。这是一个例子。

from scipy.cluster.hierarchy import dendrogram, linkage

data = [[0., 0.], [0.1, -0.1], [1., 1.], [1.1, 1.1]]

Z = linkage(data)

dendrogram(Z)  

您可以找到linkage here的文档和dendrogram here的文档。

答案 2 :(得分:3)

前一段时间我遇到了同样的问题。我设法绘制该死的树状图的方式是使用软件包ete3。该软件包能够灵活地绘制具有各种选项的树。唯一的困难是将sklearn的{​​{1}}输出转换为children_可以被ete3读取和理解的Newick Tree format。此外,我需要手动计算树突的跨度,因为children_没有提供该信息。这是我使用的代码片段。它计算Newick树,然后显示ete3树数据结构。有关如何绘制的更多详细信息,请查看here

import numpy as np
from sklearn.cluster import AgglomerativeClustering
import ete3

def build_Newick_tree(children,n_leaves,X,leaf_labels,spanner):
    """
    build_Newick_tree(children,n_leaves,X,leaf_labels,spanner)

    Get a string representation (Newick tree) from the sklearn
    AgglomerativeClustering.fit output.

    Input:
        children: AgglomerativeClustering.children_
        n_leaves: AgglomerativeClustering.n_leaves_
        X: parameters supplied to AgglomerativeClustering.fit
        leaf_labels: The label of each parameter array in X
        spanner: Callable that computes the dendrite's span

    Output:
        ntree: A str with the Newick tree representation

    """
    return go_down_tree(children,n_leaves,X,leaf_labels,len(children)+n_leaves-1,spanner)[0]+';'

def go_down_tree(children,n_leaves,X,leaf_labels,nodename,spanner):
    """
    go_down_tree(children,n_leaves,X,leaf_labels,nodename,spanner)

    Iterative function that traverses the subtree that descends from
    nodename and returns the Newick representation of the subtree.

    Input:
        children: AgglomerativeClustering.children_
        n_leaves: AgglomerativeClustering.n_leaves_
        X: parameters supplied to AgglomerativeClustering.fit
        leaf_labels: The label of each parameter array in X
        nodename: An int that is the intermediate node name whos
            children are located in children[nodename-n_leaves].
        spanner: Callable that computes the dendrite's span

    Output:
        ntree: A str with the Newick tree representation

    """
    nodeindex = nodename-n_leaves
    if nodename<n_leaves:
        return leaf_labels[nodeindex],np.array([X[nodeindex]])
    else:
        node_children = children[nodeindex]
        branch0,branch0samples = go_down_tree(children,n_leaves,X,leaf_labels,node_children[0])
        branch1,branch1samples = go_down_tree(children,n_leaves,X,leaf_labels,node_children[1])
        node = np.vstack((branch0samples,branch1samples))
        branch0span = spanner(branch0samples)
        branch1span = spanner(branch1samples)
        nodespan = spanner(node)
        branch0distance = nodespan-branch0span
        branch1distance = nodespan-branch1span
        nodename = '({branch0}:{branch0distance},{branch1}:{branch1distance})'.format(branch0=branch0,branch0distance=branch0distance,branch1=branch1,branch1distance=branch1distance)
        return nodename,node

def get_cluster_spanner(aggClusterer):
    """
    spanner = get_cluster_spanner(aggClusterer)

    Input:
        aggClusterer: sklearn.cluster.AgglomerativeClustering instance

    Get a callable that computes a given cluster's span. To compute
    a cluster's span, call spanner(cluster)

    The cluster must be a 2D numpy array, where the axis=0 holds
    separate cluster members and the axis=1 holds the different
    variables.

    """
    if aggClusterer.linkage=='ward':
        if aggClusterer.affinity=='euclidean':
            spanner = lambda x:np.sum((x-aggClusterer.pooling_func(x,axis=0))**2)
    elif aggClusterer.linkage=='complete':
        if aggClusterer.affinity=='euclidean':
            spanner = lambda x:np.max(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2))
        elif aggClusterer.affinity=='l1' or aggClusterer.affinity=='manhattan':
            spanner = lambda x:np.max(np.sum(np.abs(x[:,None,:]-x[None,:,:]),axis=2))
        elif aggClusterer.affinity=='l2':
            spanner = lambda x:np.max(np.sqrt(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2)))
        elif aggClusterer.affinity=='cosine':
            spanner = lambda x:np.max(np.sum((x[:,None,:]*x[None,:,:]))/(np.sqrt(np.sum(x[:,None,:]*x[:,None,:],axis=2,keepdims=True))*np.sqrt(np.sum(x[None,:,:]*x[None,:,:],axis=2,keepdims=True))))
        else:
            raise AttributeError('Unknown affinity attribute value {0}.'.format(aggClusterer.affinity))
    elif aggClusterer.linkage=='average':
        if aggClusterer.affinity=='euclidean':
            spanner = lambda x:np.mean(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2))
        elif aggClusterer.affinity=='l1' or aggClusterer.affinity=='manhattan':
            spanner = lambda x:np.mean(np.sum(np.abs(x[:,None,:]-x[None,:,:]),axis=2))
        elif aggClusterer.affinity=='l2':
            spanner = lambda x:np.mean(np.sqrt(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2)))
        elif aggClusterer.affinity=='cosine':
            spanner = lambda x:np.mean(np.sum((x[:,None,:]*x[None,:,:]))/(np.sqrt(np.sum(x[:,None,:]*x[:,None,:],axis=2,keepdims=True))*np.sqrt(np.sum(x[None,:,:]*x[None,:,:],axis=2,keepdims=True))))
        else:
            raise AttributeError('Unknown affinity attribute value {0}.'.format(aggClusterer.affinity))
    else:
        raise AttributeError('Unknown linkage attribute value {0}.'.format(aggClusterer.linkage))
    return spanner

clusterer = AgglomerativeClustering(n_clusters=2,compute_full_tree=True) # You can set compute_full_tree to 'auto', but I left it this way to get the entire tree plotted
clusterer.fit(X) # X for whatever you want to fit
spanner = get_cluster_spanner(clusterer)
newick_tree = build_Newick_tree(clusterer.children_,clusterer.n_leaves_,X,leaf_labels,spanner) # leaf_labels is a list of labels for each entry in X
tree = ete3.Tree(newick_tree)
tree.show()

答案 3 :(得分:0)

对于那些愿意退出Python并使用强大的D3库的人来说,使用d3.cluster()(或者,我猜,d3.tree())API来实现一个不错的,可定制的结果并不是非常困难

请参阅jsfiddle了解演示。

children_数组幸运地作为JS数组运行,唯一的中间步骤是使用d3.stratify()将其转换为分层表示。具体来说,我们需要每个节点都有idparentId

var N = 272;  // Your n_samples/corpus size.
var root = d3.stratify()
  .id((d,i) => i + N)
  .parentId((d, i) => {
    var parIndex = data.findIndex(e => e.includes(i + N));
    if (parIndex < 0) {
      return; // The root should have an undefined parentId.
    }
    return parIndex + N;
  })(data); // Your children_

由于findIndex行,你最终得到的行为至少为O(n ^ 2),但在你的n_samples变大之前它可能无关紧要,在这种情况下,你可以预先计算一个更有效的索引。

除此之外,它几乎是d3.cluster()的插件和突然使用。请参阅mbostock的canonical block或我的JSFiddle。

N.B。对于我的用例,它仅仅足以显示非叶节点;可视化样本/叶子有点棘手,因为这些可能并非全部都在children_数组中。

答案 4 :(得分:0)

来自the official docs

import numpy as np

from matplotlib import pyplot as plt
from scipy.cluster.hierarchy import dendrogram
from sklearn.datasets import load_iris
from sklearn.cluster import AgglomerativeClustering


def plot_dendrogram(model, **kwargs):
    # Create linkage matrix and then plot the dendrogram

    # create the counts of samples under each node
    counts = np.zeros(model.children_.shape[0])
    n_samples = len(model.labels_)
    for i, merge in enumerate(model.children_):
        current_count = 0
        for child_idx in merge:
            if child_idx < n_samples:
                current_count += 1  # leaf node
            else:
                current_count += counts[child_idx - n_samples]
        counts[i] = current_count

    linkage_matrix = np.column_stack([model.children_, model.distances_,
                                      counts]).astype(float)

    # Plot the corresponding dendrogram
    dendrogram(linkage_matrix, **kwargs)


iris = load_iris()
X = iris.data

# setting distance_threshold=0 ensures we compute the full tree.
model = AgglomerativeClustering(distance_threshold=0, n_clusters=None)

model = model.fit(X)
plt.title('Hierarchical Clustering Dendrogram')
# plot the top three levels of the dendrogram
plot_dendrogram(model, truncate_mode='level', p=3)
plt.xlabel("Number of points in node (or index of point if no parenthesis).")
plt.show()

请注意,当前(从scikit-learn v0.23开始)仅在使用distance_threshold参数调用AgglomerativeClustering时有效,但是从v0.24开始,您可以通过设置来强制计算距离compute_distances设为true(see nightly build docs)。