我准备在几个星期内接受采访,并且我希望能够提供一些线索,以及我在学校学到的简单的生产者/消费者问题。
没有做过一段时间,所以我很好奇你们对此有何看法?我应该添加什么来使它成为一个更好的例子等。感谢您的反馈! :)
//////////////////////////////////////////////////////////////////////////
boost::mutex bufferMutex;
deque<int> buffer;
const int maxBufferSize = 5;
//////////////////////////////////////////////////////////////////////////
bool AddToBuffer(int i)
{
if (buffer.size() < maxBufferSize)
{
buffer.push_back(i);
return true;
}
else
{
return false;
}
}
bool GetFromBuffer(int& toReturn)
{
if (buffer.size() == 0)
{
return false;
}
else
{
toReturn = buffer[buffer.size()-1];
buffer.pop_back();
return true;
}
}
struct Producer
{
int ID;
void operator()()
{
while (true)
{
boost::mutex::scoped_lock lock(bufferMutex);
int num = dice();
bool result = AddToBuffer(num);
lock.unlock();
//safe area done
if (result)
{
cout << "Producer " << this->ID << " Added " << num << endl;
}
else
{
cout << "!!Buffer was Full!!" << endl;
}
//Added
//Now wait
boost::xtime xt;
xtime_get( &xt, boost::TIME_UTC);
xt.nsec += 1000000 + 100000 * (rand() % 1000);
boost::thread::sleep(xt);
}
}
};
struct Consumer
{
int ID;
void operator()()
{
while (true)
{
int returnedInt = 0;
boost::mutex::scoped_lock lock(bufferMutex);
bool result = GetFromBuffer(returnedInt);
lock.unlock();
//safe area done
if (result)
{
cout << "\tConsumer " << this->ID << " Took Out " << returnedInt << endl;
}
else
{
cout << "!!Buffer was Empty!!" << endl;
}
//Added
//Now wait
boost::xtime xt;
xtime_get( &xt, boost::TIME_UTC);
xt.nsec += 1000000 + 100000 * (rand() % 1000);
boost::thread::sleep(xt);
}
}
};
void main()
{
Producer p, p2;
Consumer c, c2;
p.ID = 1;
p2.ID = 2;
c.ID = 1;
c2.ID = 2;
boost::thread thread1(boost::ref(p));
boost::thread thread2(boost::ref(c));
boost::thread thread3(boost::ref(p2));
boost::thread thread4(boost::ref(c2));
int x;
cin >> x;
}
答案 0 :(得分:3)
如果您已经在AddToBuffer和GetFromBuffer之类的调用中包装缓冲区对象,那么将锁定置于包装函数中会更有意义。另外,你正在明确调用unlock,这完全违背了scoped_lock的目的; scoped_lock使用资源获取初始化(RAII)来获取和释放锁。更好的用法是将临界区放在一个块中,以便由于锁超出范围而释放互斥锁,而不是由于显式调用解锁函数,因为范围不太脆弱。例如:
// Code that doesn't need locking
{
boost::mutex::scoped_lock lck(bufferMutex); // Lock is acquired here
// Code that needs to be synchronized
} // Lock is automatically released here without explicit call to unlock()
// More code that doesn't need locking