我从here复制了铰链损失函数(还有基于它的LossC和LossFunc。然后我将它包含在我的渐变下降算法中,如下所示:
do
{
iteration++;
error = 0.0;
cost = 0.0;
//loop through all instances (complete one epoch)
for (p = 0; p < number_of_files__train; p++)
{
// 1. Calculate the hypothesis h = X * theta
hypothesis = calculateHypothesis( theta, feature_matrix__train, p, globo_dict_size );
// 2. Calculate the loss = h - y and maybe the squared cost (loss^2)/2m
//cost = hypothesis - outputs__train[p];
cost = HingeLoss.loss(hypothesis, outputs__train[p]);
System.out.println( "cost " + cost );
// 3. Calculate the gradient = X' * loss / m
gradient = calculateGradent( theta, feature_matrix__train, p, globo_dict_size, cost, number_of_files__train);
// 4. Update the parameters theta = theta - alpha * gradient
for (int i = 0; i < globo_dict_size; i++)
{
theta[i] = theta[i] - LEARNING_RATE * gradient[i];
}
}
//summation of squared error (error value for all instances)
error += (cost*cost);
/* Root Mean Squared Error */
//System.out.println("Iteration " + iteration + " : RMSE = " + Math.sqrt( error/number_of_files__train ) );
System.out.println("Iteration " + iteration + " : RMSE = " + Math.sqrt( error/number_of_files__train ) );
}
while( error != 0 );
但这根本不起作用。这是由于损失功能?也许我是如何将损失函数添加到我的代码中的?
我想我的梯度下降实现也有可能出错。
以下是我计算梯度和假设的方法,这些是对的吗?
static double calculateHypothesis( double[] theta, double[][] feature_matrix, int file_index, int globo_dict_size )
{
double hypothesis = 0.0;
for (int i = 0; i < globo_dict_size; i++)
{
hypothesis += ( theta[i] * feature_matrix[file_index][i] );
}
//bias
hypothesis += theta[ globo_dict_size ];
return hypothesis;
}
static double[] calculateGradent( double theta[], double[][] feature_matrix, int file_index, int globo_dict_size, double cost, int number_of_files__train)
{
double m = number_of_files__train;
double[] gradient = new double[ globo_dict_size];//one for bias?
for (int i = 0; i < gradient.length; i++)
{
gradient[i] = (1.0/m) * cost * feature_matrix[ file_index ][ i ] ;
}
return gradient;
}
如果您有兴趣看一下,其余代码为here。
这句话下面是那些损失函数的样子。我应该使用loss
还是deriv
,这些是否正确?
/**
* Computes the HingeLoss loss
*
* @param pred the predicted value
* @param y the target value
* @return the HingeLoss loss
*/
public static double loss(double pred, double y)
{
return Math.max(0, 1 - y * pred);
}
/**
* Computes the first derivative of the HingeLoss loss
*
* @param pred the predicted value
* @param y the target value
* @return the first derivative of the HingeLoss loss
*/
public static double deriv(double pred, double y)
{
if (pred * y > 1)
return 0;
else
return -y;
}
答案 0 :(得分:1)
您为渐变提供的代码看起来不像铰链丢失的渐变。看看有效的等式,例如: https://stats.stackexchange.com/questions/4608/gradient-of-hinge-loss