用于从n生成k个元素的“反灰色”按需组合的算法

时间:2015-03-10 14:08:09

标签: algorithm sorting combinations combinatorics gray-code

我正在尝试实现一种算法,以从一组n个元素中获取k个元素的所有组合,其中两个连续组合之间的差异被最大化(因此反向格雷码)。换句话说,应该对组合进行排序,以避免元素连续出现两次,从而不会对元素进行不必要的区分。

理想情况下,算法也不会预先计算所有组合并将其存储到内存中,而是按需提供组合。 我已经对此进行了广泛搜索,并找到了一些详细的答案,例如https://stackoverflow.com/a/127856/1226020,但我似乎无法应用它。此外,该答案中链接的许多文章都是付费内容。

说明我的意思:

从一组[0,1,2,3,4]中,找到两个元素的所有组合。 使用一个简单的算法尝试增加最右边的元素直到不再可能,然后向左移动,递增前一个数字等,我得到以下结果:

[0, 1]
[0, 2]
[0, 3]
[0, 4]
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]

我使用以下Java代码生成此结果:

public class CombinationGenerator {
    private final int mNrElements;
    private final int[] mCurrentCombination;

    public CombinationGenerator(int n, int k) {
        mNrElements = n;
        mCurrentCombination = new int[k];

        initElements(0, 0);
        // fake initial state in order not to miss first combination below
        mCurrentCombination[mCurrentCombination.length - 1]--;
    }

    private void initElements(int startPos, int startValue) {
        for (int i = startPos; i < mCurrentCombination.length; i++) {
            mCurrentCombination[i] = i + startValue - startPos;
        }
    }

    public int[] getNextCombination() {
        for (int i = 0; i < mCurrentCombination.length; i++) {
            int pos = mCurrentCombination.length - 1 - i;

            if (mCurrentCombination[pos] < mNrElements - 1 - i) {
                initElements(pos, mCurrentCombination[pos] + 1);
                return mCurrentCombination;
            }
        }

        return null;
    }

    public static void main(String[] args) {
        CombinationGenerator cg = new CombinationGenerator(5, 2);
        int[] c;

        while ((c = cg.getNextCombination()) != null) {
            System.out.println(Arrays.toString(c));
        }
    }

}

这不是我想要的,因为我希望每个连续组合尽可能与前一个组合不同。目前,元素“1”连续四次出现,然后再也不出现。对于这个特定的例子,一个解决方案是:

[0, 1]
[2, 3]
[0, 4]
[1, 2]
[3, 4]
[0, 2]
[1, 3]
[2, 4]
[0, 3]
[1, 4]

我确实设法通过在生成组合后应用排序算法来完成此特定(7,4)情况的结果,但这不符合我对按需组合生成的要求,因为整个组合集合必须立即生成,然后排序并保存在内存中。我不确定它是否适用于任意k和n值。最后,我很确定这不是最有效的方法,因为排序算法基本上遍历了一组组合,试图找到一个与前一个组合没有共享元素的组合。我还考虑为每个元素保留一个“命中计数”表,并使用它来始终获得包含最低组合命中数的下一个组合。 我的一些实证结论是,如果n> 1,则可以避免元素完全出现在两个连续的组合中。 2K。否则,至少应该可以避免元素连续出现两次等。

你可以将这个问题与使用足球比赛等标准循环方案获得的k = 2进行比较,但我需要一个k的任意值的解决方案。我们可以想象这是一场某种比赛的比赛,我们有一些球员可以在一组比赛中对抗所有其他球员,每场比赛都有k个球员。玩家应该尽可能不必连续玩两场比赛,但也不必在两场比赛之间不必要地等待很长时间。

关于如何使用可靠的排序算法后期生成或者 - 最好是按需解决这个问题的任何指针都会很棒!

注意:通常假设n <= 50,k <= 5

由于

2 个答案:

答案 0 :(得分:2)

快速&amp;处理@DavidEisenstat建议的脏工作代码:

public static void main(String[] args) {
    ArrayList<int[]> all = new ArrayList<int[]>();
    // output is 0 if distance(i, j) != max, and 1 otherwise
    int[][] m = buildGraph(7, 4, all);
    HamiltonianCycle hc = new HamiltonianCycle();
    int path[] = hc.findHamiltonianCycle(m);
    if (path != null) {
        // I have no proof that such a path will always exist
        for (int i : path) {
            System.out.println(Arrays.toString(all.get(i)));
        }
    }
}

上述代码的输出(7,4);距离(长度 - size_of_intersection)总是3;尝试使用4会导致图表断开连接:

    [0, 1, 2, 3]
    [0, 4, 5, 6]
    [1, 2, 3, 4]
    [0, 1, 5, 6]
    [0, 2, 3, 4]
    [1, 2, 5, 6]
    [0, 1, 3, 4]
    [0, 2, 5, 6]
    [1, 3, 4, 5]
    [0, 1, 2, 6]
    [0, 3, 4, 5]
    [1, 2, 3, 6]
    [0, 1, 4, 5]
    [0, 2, 3, 6]
    [1, 4, 5, 6]
    [0, 2, 3, 5]
    [1, 2, 4, 6]
    [0, 3, 5, 6]
    [1, 2, 4, 5]
    [0, 3, 4, 6]
    [1, 2, 3, 5]
    [0, 2, 4, 6]
    [1, 3, 5, 6]
    [0, 2, 4, 5]
    [1, 3, 4, 6]
    [0, 1, 2, 5]
    [2, 3, 4, 6]
    [0, 1, 3, 5]
    [2, 4, 5, 6]
    [0, 1, 3, 6]
    [2, 3, 4, 5]
    [0, 1, 4, 6]
    [2, 3, 5, 6]
    [0, 1, 2, 4]
    [3, 4, 5, 6]

缺少代码:

// uses JHH's code to build sequences, stores it in 'all'
public static int[][] buildGraph(int n, int k, ArrayList<int[]> all) {
    SequenceGenerator sg = new SequenceGenerator(n, k);
    int[] c;
    while ((c = sg.getNextCombination()) != null) {
        all.add(c.clone());         
    }
    int best = Math.min(n-k, k);
    System.out.println("Best is " + best);
    int matrix[][] = new int[all.size()][];
    for (int i=0; i<matrix.length; i++) {
        matrix[i] = new int[all.size()];
        for (int j=0; j<i; j++) {
            int d = distance(all.get(j), all.get(i));
            matrix[i][j] = matrix[j][i] = (d != best)? 0 : 1;
        }           
    }
    return matrix;
}

距离:(根本没有效率,但与哈密顿计算的成本相比相形见绌)

public static int distance(int[] a, int[] b) {
        HashSet<Integer> ha = new HashSet<Integer>();
        HashSet<Integer> hb = new HashSet<Integer>();
        for (int i=0; i<a.length; i++) {
                ha.add(a[i]);
                hb.add(b[i]);
        }
        ha.retainAll(hb);
        return a.length - ha.size();
}

为了找到汉密尔顿主义者,我修改了http://www.sanfoundry.com/java-program-find-hamiltonian-cycle-unweighted-graph/的代码:

import java.util.Arrays;

public class HamiltonianCycle {

    private int V, pathCount;
    private int[] path;
    private int[] answer;
    private int[][] graph;

    public int[] findHamiltonianCycle(int[][] g) {
        V = g.length;
        path = new int[V];

        Arrays.fill(path, -1);
        graph = g;
        path[0] = 0;
        pathCount = 1;
        if (solve(0)) {
            return path;
        } else {
            return null;
        }
    }

    public boolean solve(int vertex) {
        if (graph[vertex][0] == 1 && pathCount == V) {
            return true;
        }
        if (pathCount == V) {
            return false;
        }

        for (int v = 0; v < V; v++) {
            if (graph[vertex][v] == 1) {
                path[pathCount++] = v;
                graph[vertex][v] = 0;
                graph[v][vertex] = 0;

                if (!isPresent(v)) {
                    if (solve(v)) {
                        answer = path.clone();
                        return true;
                    }
                }

                graph[vertex][v] = 1;
                graph[v][vertex] = 1;
                path[--pathCount] = -1;
            }
        }
        return false;
    }

    public boolean isPresent(int v) {
        for (int i = 0; i < pathCount - 1; i++) {
            if (path[i] == v) {
                return true;
            }
        }
        return false;
    }
}

警告:对于大量组合来说,这将非常缓慢......

答案 1 :(得分:1)

虽然我非常感谢@tucuxi和@David Eisenstadt的努力,但我发现哈密顿方法存在一些问题,即它没有解决n和k的某些值,并且某些元素也被不必要地区分。

我决定将我的问题中列出的想法改为go(点击计数表),它似乎给出了相当不错的结果。然而,该解决方案还需要不满足按需奖励要求的后代分类。对于合理的n和k,这应该是可行的。

不可否认,我发现我的算法有时候似乎更喜欢导致一个元素连续出现的组合,这可能会被调整。但截至目前,我的算法可能不如特别为(7,4)的tucuxi。然而,它确实为每个n,k提供了解决方案,并且似乎更少地区分元素。

我的代码列在下面。

再次感谢。

public class CombinationGenerator {
    private final int N;
    private final int K;
    private final int[] mCurrentCombination;

    public CombinationGenerator(int n, int k) {
        N = n;
        K = k;
        mCurrentCombination = new int[k];

        setElementSequence(0, 0);
        mCurrentCombination[K - 1]--; // fool the first iteration
    }

    private void setElementSequence(int startPos, int startValue) {
        for (int i = startPos; i < K; i++) {
            mCurrentCombination[i] = i + startValue - startPos;
        }
    }

    public int[] getNextCombination() {
        for (int i = K - 1; i >= 0; i--) {
            if (mCurrentCombination[i] < i + N - K) {
                setElementSequence(i, mCurrentCombination[i] + 1);
                return mCurrentCombination.clone();
            }
        }

        return null;
    }   
}

public class CombinationSorter {
    private final int N;
    private final int K;

    public CombinationSorter(int n, int k) {
        N = n;
        K = k;
    }

    public List<int[]> getSortedCombinations(List<int[]> combinations) {
        List<int[]> sortedCombinations = new LinkedList<int[]>();
        int[] combination = null;
        int[] hitCounts = new int[N]; // how many times each element has been
                                      // used so far

        // Note that this modifies (empties) the input list
        while (!combinations.isEmpty()) {
            int index = findNextCombination(combinations, hitCounts, combination);
            combination = combinations.remove(index);
            sortedCombinations.add(combination);

            addHitCounts(combination, hitCounts);
        }

        return sortedCombinations;
    }

    private int findNextCombination(List<int[]> combinations, int[] hitCounts,
            int[] previousCombination) {
        int lowestHitCount = Integer.MAX_VALUE;
        int foundIndex = 0;

        // From the remaining combinations, find the one with the least used
        // elements
        for (int i = 0; i < combinations.size(); i++) {
            int[] comb = combinations.get(i);
            int hitCount = getHitCount(comb, hitCounts);

            if (hitCount < lowestHitCount) {
                lowestHitCount = hitCount;
                foundIndex = i;
            } else if (hitCount == lowestHitCount
                    && previousCombination != null
                    && getNrCommonElements(comb, previousCombination) < getNrCommonElements(
                            combinations.get(foundIndex), previousCombination)) {
                // prefer this combination if hit count is equal but it's more
                // different from the previous combination in our sorted list
                // than what's been found so far (avoids consecutive element
                // appearances)
                foundIndex = i;
            }
        }

        return foundIndex;
    }

    private int getHitCount(int[] combination, int[] hitCounts) {
        int hitCount = 0;

        for (int i = 0; i < K; i++) {
            hitCount += hitCounts[combination[i]];
        }

        return hitCount;
    }

    private void addHitCounts(int[] combination, int[] hitCounts) {
        for (int i = 0; i < K; i++) {
            hitCounts[combination[i]]++;
        }
    }

    private int getNrCommonElements(int[] c1, int[] c2) {
        int count = 0;

        for (int i = 0; i < K; i++) {
            for (int j = 0; j < K; j++) {
                if (c1[i] == c2[j]) {
                    count++;
                }
            }
        }
        return count;
    }
}

public class Test {
    public static void main(String[] args) {
        final int n = 7;
        final int k = 3;

        CombinationGenerator cg = new CombinationGenerator(n, k);
        List<int[]> combinations = new LinkedList<int[]>();
        int[] nc;

        while ((nc = cg.getNextCombination()) != null) {
            combinations.add(nc);
        }

        for (int[] c : combinations) {
            System.out.println(Arrays.toString(c));
        }

        System.out.println("Sorting...");

        CombinationSorter cs = new CombinationSorter(n, k);
        List<int[]> sortedCombinations = cs.getSortedCombinations(combinations);

        for (int[] sc : sortedCombinations) {
            System.out.println(Arrays.toString(sc));
        }
    }

}

(7,4)的结果:

[0, 1, 2, 3]
[0, 4, 5, 6]
[1, 2, 3, 4]
[0, 1, 5, 6]
[2, 3, 4, 5]
[0, 1, 2, 6]
[3, 4, 5, 6]
[0, 1, 2, 4]
[0, 3, 5, 6]
[1, 2, 4, 5]
[0, 1, 3, 6]
[2, 4, 5, 6]
[0, 1, 3, 4]
[2, 3, 5, 6]
[0, 1, 4, 5]
[0, 2, 3, 6]
[1, 3, 4, 5]
[0, 2, 4, 6]
[1, 2, 3, 5]
[0, 1, 4, 6]
[0, 2, 3, 5]
[1, 2, 4, 6]
[1, 3, 5, 6]
[0, 2, 3, 4]
[1, 2, 5, 6]
[0, 3, 4, 5]
[1, 2, 3, 6]
[0, 2, 4, 5]
[1, 3, 4, 6]
[0, 2, 5, 6]
[0, 1, 3, 5]
[2, 3, 4, 6]
[1, 4, 5, 6]
[0, 1, 2, 5]
[0, 3, 4, 6]

(5,2)的结果:

[0, 1]
[2, 3]
[0, 4]
[1, 2]
[3, 4]
[0, 2]
[1, 3]
[2, 4]
[0, 3]
[1, 4]