我想编写自己的牛顿分形生成器..它正在使用OpenCL ......但这不是问题..我的问题是atm。只有少数几个像素正在收敛。
所以要解释我到目前为止所做的事情:
这是我渲染的内容:
这是整个内核:
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#define pi 3.14159265359
struct complex {
double im;
double re;
double r;
double phi;
};
struct complex createComplexFromPolar(double _r, double _phi){
struct complex t;
t.r = _r;
t.phi = _phi;
t.re = cos(t.phi)*t.r;
t.im = sin(t.phi)*t.r;
return t;
}
struct complex createComplexFromKarthes(double real, double imag){
struct complex t;
t.re = real;
t.im = imag;
t.phi = atan(imag / real);
t.r = sqrt(t.re*t.re + t.im*t.im);
return t;
}
struct complex recreateComplexFromKarthes(struct complex t){
return t = createComplexFromKarthes(t.re, t.im);
}
struct complex recreateComplexFromPolar(struct complex t){
return t = createComplexFromPolar(t.r, t.phi);
}
struct complex addComplex(const struct complex z, const struct complex c){
struct complex t;
t.re = c.re + z.re;
t.im = c.im + z.im;
return recreateComplexFromKarthes(t);
}
struct complex subComplex(const struct complex z, const struct complex c){
struct complex t;
t.re = z.re - c.re;
t.im = z.im - c.im;
return recreateComplexFromKarthes(t);
}
struct complex addComplexScalar(const struct complex z, const double n){
struct complex t;
t.re = z.re + n;
return recreateComplexFromKarthes(t);
}
struct complex subComplexScalar(const struct complex z, const double n){
struct complex t;
t.re = z.re - n;
return recreateComplexFromKarthes(t);
}
struct complex multComplexScalar(const struct complex z, const double n) {
struct complex t;
t.re = z.re * n;
t.im = z.im * n;
return recreateComplexFromKarthes(t);
}
struct complex multComplex(const struct complex z, const struct complex c) {
return createComplexFromPolar(z.r*c.r, z.phi + c.phi);
}
struct complex powComplex(const struct complex z, int i){
struct complex t = z;
for (int j = 0; j < i; j++){
t = multComplex(t, z);
}
return t;
}
struct complex divComplex(const struct complex z, const struct complex c) {
return createComplexFromPolar(z.r / c.r, z.phi - c.phi);
}
bool compComplex(const struct complex z, const struct complex c, float comp){
struct complex t = subComplex(z, c);
if (fabs(t.re) <= comp && fabs(t.im) <= comp)
return true;
return false;
}
__kernel void newtonFraktal(__global const int* res, __global const int* zoom, __global int* offset, __global const double* param, __global int* result, __global int* resType){
const int x = get_global_id(0) + offset[0];
const int y = get_global_id(1) + offset[1];
const int xRes = res[0];
const int yRes = res[1];
const double a = (x - (xRes / 2)) == 0 ? 0 : (double)(zoom[0] / (x - (double)(xRes / 2)));
const double b = (y - (yRes / 2)) == 0 ? 0 : (double)(zoom[1] / (y - (double)(yRes / 2)));
struct complex z = createComplexFromKarthes(a, b);
struct complex zo = z;
struct complex c = createComplexFromKarthes(param[0], param[1]);
struct complex x1 = createComplexFromKarthes(1,0);
struct complex x2 = createComplexFromKarthes(-1, 0);
struct complex x3 = createComplexFromKarthes(0, 1);
struct complex x4 = createComplexFromKarthes(0, -1);
resType[x + xRes * y] = 3;
int i = 0;
while (i < 30000 && fabs(z.r) < 10000){
z = subComplex(z, divComplex(subComplexScalar(powComplex(z, 4), 1), multComplexScalar(powComplex(z, 3), 4)));
i++;
if (compComplex(z, x1, 0.05)){
resType[x + xRes * y] = 0;
break;
} else if (compComplex(z, x2, 0.05)){
resType[x + xRes * y] = 1;
break;
} else if (compComplex(z, x3, 0.05)){
resType[x + xRes * y] = 2;
break;
}
}
if (fabs(z.r) >= 10000){
resType[x + xRes * y] = 4;
}
result[x + xRes * y] = i;
}
以下是图像的颜色:
const int xRes = core->getXRes();
const int yRes = core->getYRes();
for (int y = 0; y < fraktal->getHeight(); y++){
for (int x = 0; x < fraktal->getWidth(); x++){
int conDiv = genCL->result[x + y * xRes];
int type = genCL->typeRes[x + y * xRes];
if (type == 0){
//converging to x1
fraktal->setPixel(x, y, 1*conDiv, 1*conDiv, 0, 1);
} else if (type == 1){
//converging to x2
fraktal->setPixel(x, y, 0, 0, 1*conDiv, 1);
} else if (type == 2){
//converging to x3
fraktal->setPixel(x, y, 0, 1*conDiv, 0, 1);
} else if (type == 3){
//diverging and interrupted by loop end
fraktal->setPixel(x, y, 1*conDiv, 0, 0, 1);
} else {
//diverging and interrupted by z.r > 10000
fraktal->setPixel(x, y, 1, 1, 1, 0.1*conDiv);
}
}
}
我在复杂的数字计算中遇到了一些错误,但是我今天一遍又一遍地检查所有内容......我认为它们现在应该没问题了......但是还有什么可能是因为只有这几个起始值会收敛?我对牛顿的方法做错了吗?
感谢您的帮助!!
答案 0 :(得分:1)
在某种程度上,它确实有助于将代码作为普通的C代码运行..因为这使调试更容易:所以问题是我现在能够解决的一些编码问题...例如我的pow函数已损坏,当我添加或减去了我忘了将虚部设置为临时复数..所以这是我最后的OpenCL内核:
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#define pi 3.14159265359
struct complex {
double im;
double re;
double r;
double phi;
};
struct complex createComplexFromPolar(double _r, double _phi){
struct complex t;
t.r = _r;
t.phi = _phi;
t.re = _r*cos(_phi);
t.im = _r*sin(_phi);
return t;
}
struct complex createComplexFromKarthes(double real, double imag){
struct complex t;
t.re = real;
t.im = imag;
t.phi = atan2(imag, real);
t.r = sqrt(t.re*t.re + t.im*t.im);
return t;
}
struct complex recreateComplexFromKarthes(struct complex t){
return createComplexFromKarthes(t.re, t.im);
}
struct complex recreateComplexFromPolar(struct complex t){
return createComplexFromPolar(t.r, t.phi);
}
struct complex addComplex(const struct complex z, const struct complex c){
return createComplexFromKarthes(c.re + z.re, c.im + z.im);
}
struct complex subComplex(const struct complex z, const struct complex c){
return createComplexFromKarthes(z.re - c.re, z.im - c.im);
}
struct complex addComplexScalar(const struct complex z, const double n){
return createComplexFromKarthes(z.re + n,z.im);
}
struct complex subComplexScalar(const struct complex z, const double n){
return createComplexFromKarthes(z.re - n, z.im);
}
struct complex multComplexScalar(const struct complex z, const double n){
return createComplexFromKarthes(z.re * n,z.im * n);
}
struct complex multComplex(const struct complex z, const struct complex c) {
return createComplexFromKarthes(z.re*c.re-z.im*c.im, z.re*c.im+z.im*c.re);
//return createComplexFromPolar(z.r*c.r, z.phi + c.phi);
}
struct complex powComplex(const struct complex z, int i){
struct complex t = z;
for (int j = 0; j < i-1; j++){
t = multComplex(t, z);
}
return t;
}
struct complex divComplex(const struct complex z, const struct complex c) {
return createComplexFromPolar(z.r / c.r, z.phi-c.phi);
}
bool compComplex(const struct complex z, const struct complex c, float comp){
if (fabs(z.re - c.re) <= comp && fabs(z.im - c.im) <= comp)
return true;
return false;
}
__kernel void newtonFraktal(__global const int* res, __global const int* zoom, __global int* offset, __global const double* param, __global int* result, __global int* resType){
const int x = get_global_id(0) + offset[0];
const int y = get_global_id(1) + offset[1];
const int xRes = res[0];
const int yRes = res[1];
const double a = (x - (xRes / 2)) == 0 ? 0 : (double)((x - (double)(xRes / 2)) / zoom[0]);
const double b = (y - (yRes / 2)) == 0 ? 0 : (double)((y - (double)(yRes / 2)) / zoom[1]);
struct complex z = createComplexFromKarthes(a, b);
//struct complex c = createComplexFromKarthes(param[0], param[1]);
struct complex x1 = createComplexFromKarthes(0.7071068, 0.7071068);
struct complex x2 = createComplexFromKarthes(0.7071068, -0.7071068);
struct complex x3 = createComplexFromKarthes(-0.7071068, 0.7071068);
struct complex x4 = createComplexFromKarthes(-0.7071068, -0.7071068);
struct complex f, d;
resType[x + xRes * y] = 11;
int i = 0;
while (i < 6000 && fabs(z.r) < 10000){
f = addComplexScalar(powComplex(z, 4), 1);
d = multComplexScalar(powComplex(z, 3), 3);
z = subComplex(z, divComplex(f, d));
i++;
if (compComplex(z, x1, 0.0000001)){
resType[x + xRes * y] = 0;
break;
} else if (compComplex(z, x2, 0.0000001)){
resType[x + xRes * y] = 1;
break;
} else if (compComplex(z, x3, 0.0000001)){
resType[x + xRes * y] = 2;
break;
} else if (compComplex(z, x4, 0.0000001)){
resType[x + xRes * y] = 3;
break;
}
}
if (fabs(z.r) >= 1000){
resType[x + xRes * y] = 10;
}
result[x + xRes * y] = i;
}
希望有一天它可能对某人有所帮助.. :)