>>> timeit.timeit("'x' in ('x',)")
0.04869917374131205
>>> timeit.timeit("'x' == 'x'")
0.06144205736110564
也适用于具有多个元素的元组,两个版本似乎都线性增长:
>>> timeit.timeit("'x' in ('x', 'y')")
0.04866674801541748
>>> timeit.timeit("'x' == 'x' or 'x' == 'y'")
0.06565782838087131
>>> timeit.timeit("'x' in ('y', 'x')")
0.08975995576448526
>>> timeit.timeit("'x' == 'y' or 'x' == 'y'")
0.12992391047427532
基于此,我认为我应该完全开始使用in
而不是==
!
答案 0 :(得分:254)
正如我提到David Wolever所说的那样,除此之外还有更多的东西;两种方法都派遣到is
;你可以通过
min(Timer("x == x", setup="x = 'a' * 1000000").repeat(10, 10000))
#>>> 0.00045456900261342525
min(Timer("x == y", setup="x = 'a' * 1000000; y = 'a' * 1000000").repeat(10, 10000))
#>>> 0.5256857610074803
第一个只能这么快,因为它按身份检查。
要找出为什么一个人比另一个人花费更长的时间,让我们追溯执行。
它们都从ceval.c
开始,从COMPARE_OP
开始,因为这是涉及的字节码
TARGET(COMPARE_OP) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = cmp_outcome(oparg, left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
PREDICT(POP_JUMP_IF_FALSE);
PREDICT(POP_JUMP_IF_TRUE);
DISPATCH();
}
这会弹出堆栈中的值(技术上只会弹出一个)
PyObject *right = POP();
PyObject *left = TOP();
并运行比较:
PyObject *res = cmp_outcome(oparg, left, right);
cmp_outcome
就是这样:
static PyObject *
cmp_outcome(int op, PyObject *v, PyObject *w)
{
int res = 0;
switch (op) {
case PyCmp_IS: ...
case PyCmp_IS_NOT: ...
case PyCmp_IN:
res = PySequence_Contains(w, v);
if (res < 0)
return NULL;
break;
case PyCmp_NOT_IN: ...
case PyCmp_EXC_MATCH: ...
default:
return PyObject_RichCompare(v, w, op);
}
v = res ? Py_True : Py_False;
Py_INCREF(v);
return v;
}
这是路径分裂的地方。 PyCmp_IN
分支
int
PySequence_Contains(PyObject *seq, PyObject *ob)
{
Py_ssize_t result;
PySequenceMethods *sqm = seq->ob_type->tp_as_sequence;
if (sqm != NULL && sqm->sq_contains != NULL)
return (*sqm->sq_contains)(seq, ob);
result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS);
return Py_SAFE_DOWNCAST(result, Py_ssize_t, int);
}
请注意,元组定义为
static PySequenceMethods tuple_as_sequence = {
...
(objobjproc)tuplecontains, /* sq_contains */
};
PyTypeObject PyTuple_Type = {
...
&tuple_as_sequence, /* tp_as_sequence */
...
};
所以分支
if (sqm != NULL && sqm->sq_contains != NULL)
将被采用,*sqm->sq_contains
即函数(objobjproc)tuplecontains
将被采用。
这样做
static int
tuplecontains(PyTupleObject *a, PyObject *el)
{
Py_ssize_t i;
int cmp;
for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i)
cmp = PyObject_RichCompareBool(el, PyTuple_GET_ITEM(a, i),
Py_EQ);
return cmp;
}
......等等,PyObject_RichCompareBool
其他分支采取了什么?不,那是PyObject_RichCompare
。
该代码路径很短,所以很可能只是降低了这两个代码的速度。让我们进行比较。
int
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
{
PyObject *res;
int ok;
/* Quick result when objects are the same.
Guarantees that identity implies equality. */
if (v == w) {
if (op == Py_EQ)
return 1;
else if (op == Py_NE)
return 0;
}
...
}
PyObject_RichCompareBool
中的代码路径几乎立即终止。对于PyObject_RichCompare
,它确实
PyObject *
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
{
PyObject *res;
assert(Py_LT <= op && op <= Py_GE);
if (v == NULL || w == NULL) { ... }
if (Py_EnterRecursiveCall(" in comparison"))
return NULL;
res = do_richcompare(v, w, op);
Py_LeaveRecursiveCall();
return res;
}
Py_EnterRecursiveCall
/ Py_LeaveRecursiveCall
组合不在前一个路径中,但这些是相对较快的宏,在递增和递减一些全局变量后会发生短路。
do_richcompare
:
static PyObject *
do_richcompare(PyObject *v, PyObject *w, int op)
{
richcmpfunc f;
PyObject *res;
int checked_reverse_op = 0;
if (v->ob_type != w->ob_type && ...) { ... }
if ((f = v->ob_type->tp_richcompare) != NULL) {
res = (*f)(v, w, op);
if (res != Py_NotImplemented)
return res;
...
}
...
}
这会进行一些快速检查以致电v->ob_type->tp_richcompare
PyTypeObject PyUnicode_Type = {
...
PyUnicode_RichCompare, /* tp_richcompare */
...
};
哪个
PyObject *
PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
{
int result;
PyObject *v;
if (!PyUnicode_Check(left) || !PyUnicode_Check(right))
Py_RETURN_NOTIMPLEMENTED;
if (PyUnicode_READY(left) == -1 ||
PyUnicode_READY(right) == -1)
return NULL;
if (left == right) {
switch (op) {
case Py_EQ:
case Py_LE:
case Py_GE:
/* a string is equal to itself */
v = Py_True;
break;
case Py_NE:
case Py_LT:
case Py_GT:
v = Py_False;
break;
default:
...
}
}
else if (...) { ... }
else { ...}
Py_INCREF(v);
return v;
}
即,left == right
上的此快捷方式......但仅在执行
if (!PyUnicode_Check(left) || !PyUnicode_Check(right))
if (PyUnicode_READY(left) == -1 ||
PyUnicode_READY(right) == -1)
所有路径都看起来像这样(手动递归内联,展开和修剪已知分支)
POP() # Stack stuff
TOP() #
#
case PyCmp_IN: # Dispatch on operation
#
sqm != NULL # Dispatch to builtin op
sqm->sq_contains != NULL #
*sqm->sq_contains #
#
cmp == 0 # Do comparison in loop
i < Py_SIZE(a) #
v == w #
op == Py_EQ #
++i #
cmp == 0 #
#
res < 0 # Convert to Python-space
res ? Py_True : Py_False #
Py_INCREF(v) #
#
Py_DECREF(left) # Stack stuff
Py_DECREF(right) #
SET_TOP(res) #
res == NULL #
DISPATCH() #
VS
POP() # Stack stuff
TOP() #
#
default: # Dispatch on operation
#
Py_LT <= op # Checking operation
op <= Py_GE #
v == NULL #
w == NULL #
Py_EnterRecursiveCall(...) # Recursive check
#
v->ob_type != w->ob_type # More operation checks
f = v->ob_type->tp_richcompare # Dispatch to builtin op
f != NULL #
#
!PyUnicode_Check(left) # ...More checks
!PyUnicode_Check(right)) #
PyUnicode_READY(left) == -1 #
PyUnicode_READY(right) == -1 #
left == right # Finally, doing comparison
case Py_EQ: # Immediately short circuit
Py_INCREF(v); #
#
res != Py_NotImplemented #
#
Py_LeaveRecursiveCall() # Recursive check
#
Py_DECREF(left) # Stack stuff
Py_DECREF(right) #
SET_TOP(res) #
res == NULL #
DISPATCH() #
现在,PyUnicode_Check
和PyUnicode_READY
相当便宜,因为它们只检查了几个字段,但显而易见的是,最上面的一个是较小的代码路径,它只有较少的函数调用,只有一个开关
声明,只是有点薄。
两者都发送到if (left_pointer == right_pointer)
;不同之处在于他们为实现这一目标所做的工作量。 in
只是做得更少。
答案 1 :(得分:181)
这里有三个因素在起作用,结合起来,产生了这种令人惊讶的行为。
首先:in
运算符在检查相等性(x is y
)之前采用快捷方式并检查标识(x == y
):
>>> n = float('nan')
>>> n in (n, )
True
>>> n == n
False
>>> n is n
True
第二:由于Python的字符串实习,"x"
中的"x" in ("x", )
都是相同的:
>>> "x" is "x"
True
(大警告:这是特定于实现的行为!is
永远不会用于比较字符串,因为 有时会给出惊人的答案;例如"x" * 100 is "x" * 100 ==> False
)
第三:详见Veedrac's fantastic answer,tuple.__contains__
(x in (y, )
大致等同于(y, ).__contains__(x)
)达到了执行身份的程度检查速度超过str.__eq__
(同样,x == y
大致等同于x.__eq__(y)
)。
你可以看到这方面的证据,因为x in (y, )
明显慢于逻辑等效的x == y
:
In [18]: %timeit 'x' in ('x', )
10000000 loops, best of 3: 65.2 ns per loop
In [19]: %timeit 'x' == 'x'
10000000 loops, best of 3: 68 ns per loop
In [20]: %timeit 'x' in ('y', )
10000000 loops, best of 3: 73.4 ns per loop
In [21]: %timeit 'x' == 'y'
10000000 loops, best of 3: 56.2 ns per loop
x in (y, )
情况较慢,因为is
比较失败后,in
运算符会回退到正常的等式检查(即使用==
),所以比较需要与==
大约相同的时间,因为创建元组,走其成员等的开销会导致整个操作变慢。
另请注意a in (b, )
时a is b
仅
In [48]: a = 1
In [49]: b = 2
In [50]: %timeit a is a or a == a
10000000 loops, best of 3: 95.1 ns per loop
In [51]: %timeit a in (a, )
10000000 loops, best of 3: 140 ns per loop
In [52]: %timeit a is b or a == b
10000000 loops, best of 3: 177 ns per loop
In [53]: %timeit a in (b, )
10000000 loops, best of 3: 169 ns per loop
(为什么a in (b, )
比a is b or a == b
更快?我的猜测是虚拟机指令更少 - a in (b, )
只有3条指令,其中a is b or a == b
会相当多更多虚拟机指令)
Veedrac的答案 - https://stackoverflow.com/a/28889838/71522 - 详细介绍了==
和in
中每个事件发生的具体情况,非常值得一读。