我不确定是否允许此类问题,但我将RadioHead ASK协议移植到C(VirtualWire的后继者)。无论如何接收部分工作,我测试通过上传示例传输草图到Arduino和我自己接收另一个Arduino。但是,当我尝试传输部件时,它不起作用。你可能会说你的代码端口是错误的,是的,它是某个地方,但我无法找到哪里..当我打印示例的编码缓冲区时,它看起来像:
2A 2A 2A 2A 2A 2A 38 2C D 2A 34 34 34 34 D D
D D 1A 23 1A 19 1A 2A 1A 2A 1A 34 E 34 D 34
我的版本也一样。因此,消息的编码是正确的,它也提供相同的FCS(CRC-CCITT)。
所以它一定是我猜的发送部分,看起来:
原件:
void RH_ASK::transmitTimer()
{
if (_txSample++ == 0)
{
// Send next bit
// Symbols are sent LSB first
// Finished sending the whole message? (after waiting one bit period
// since the last bit)
if (_txIndex >= _txBufLen)
{
setModeIdle();
_txGood++;
}
else
{
writeTx(_txBuf[_txIndex] & (1 << _txBit++));
if (_txBit >= 6)
{
_txBit = 0;
_txIndex++;
}
}
}
if (_txSample > 7)
_txSample = 0;
}
我的版本:
void tick_transmit()
{
static volatile uint8_t sample = 0, index = 0, bit = 0;
if (sample++ == 0)
{
if (index >= _transmitInfo.bufferLength)
{
set_mode(ASK_MODE_IDLE);
index = 0; //setup for the next transmit
sample = 0;
bit = 0;
return;
}
write(_transmitInfo.buffer[index] & (1 << bit++));
if (bit >= 6)
{
bit = 0;
index++;
}
}
if (sample > 7)
sample = 0;
}
除了我将所有全局变量移动到函数self并重命名它们之外,对我来说看起来一样。
完整原始版本:
// RH_ASK.cpp
//
// Copyright (C) 2014 Mike McCauley
// $Id: RH_ASK.cpp,v 1.14 2014/08/27 22:00:36 mikem Exp $
#include <RH_ASK.h>
#include <RHCRC.h>
#if (RH_PLATFORM == RH_PLATFORM_STM32) // Maple etc
HardwareTimer timer(MAPLE_TIMER);
#endif
// RH_ASK on Arduino uses Timer 1 to generate interrupts 8 times per bit interval
// Define RH_ASK_ARDUINO_USE_TIMER2 if you want to use Timer 2 instead of Timer 1 on Arduino
// You may need this to work around other librraies that insiston using timer 1
//#define RH_ASK_ARDUINO_USE_TIMER2
// Interrupt handler uses this to find the most recently initialised instance of this driver
static RH_ASK* thisASKDriver;
// 4 bit to 6 bit symbol converter table
// Used to convert the high and low nybbles of the transmitted data
// into 6 bit symbols for transmission. Each 6-bit symbol has 3 1s and 3 0s
// with at most 3 consecutive identical bits
static uint8_t symbols[] =
{
0xd, 0xe, 0x13, 0x15, 0x16, 0x19, 0x1a, 0x1c,
0x23, 0x25, 0x26, 0x29, 0x2a, 0x2c, 0x32, 0x34
};
// This is the value of the start symbol after 6-bit conversion and nybble swapping
#define RH_ASK_START_SYMBOL 0xb38
RH_ASK::RH_ASK(uint16_t speed, uint8_t rxPin, uint8_t txPin, uint8_t pttPin, bool pttInverted)
:
_speed(speed),
_rxPin(rxPin),
_txPin(txPin),
_pttPin(pttPin),
_pttInverted(pttInverted)
{
// Initialise the first 8 nibbles of the tx buffer to be the standard
// preamble. We will append messages after that. 0x38, 0x2c is the start symbol before
// 6-bit conversion to RH_ASK_START_SYMBOL
uint8_t preamble[RH_ASK_PREAMBLE_LEN] = {0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x38, 0x2c};
memcpy(_txBuf, preamble, sizeof(preamble));
}
bool RH_ASK::init()
{
if (!RHGenericDriver::init())
return false;
thisASKDriver = this;
#if (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
#ifdef RH_ASK_PTT_PIN
RH_ASK_PTT_DDR |= (1<<RH_ASK_PTT_PIN);
RH_ASK_TX_DDR |= (1<<RH_ASK_TX_PIN);
RH_ASK_RX_DDR &= ~(1<<RH_ASK_RX_PIN);
#else
RH_ASK_TX_DDR |= (1<<RH_ASK_TX_PIN);
RH_ASK_RX_DDR &= ~(1<<RH_ASK_RX_PIN);
#endif
#else
// Set up digital IO pins for arduino
pinMode(_txPin, OUTPUT);
pinMode(_rxPin, INPUT);
pinMode(_pttPin, OUTPUT);
#endif
// Ready to go
setModeIdle();
TCCR1A = 0; //sets normal timer mode; disables compare
TCCR1B = _BV(WGM12) | _BV(CS10); //sets CTC Mode; No Prescaling
OCR1A = 1000; //sets compare at 1000
TIMSK1 |= _BV(OCIE1A);
return true;
}
// Put these prescaler structs in PROGMEM, not on the stack
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) || (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
#if defined(RH_ASK_ARDUINO_USE_TIMER2)
// Timer 2 has different prescalers
PROGMEM static const uint16_t prescalers[] = {0, 1, 8, 32, 64, 128, 256, 3333};
#else
PROGMEM static const uint16_t prescalers[] = {0, 1, 8, 64, 256, 1024, 3333};
#endif
#define NUM_PRESCALERS (sizeof(prescalers) / sizeof( uint16_t))
#endif
// Common function for setting timer ticks @ prescaler values for speed
// Returns prescaler index into {0, 1, 8, 64, 256, 1024} array
// and sets nticks to compare-match value if lower than max_ticks
// returns 0 & nticks = 0 on fault
uint8_t RH_ASK::timerCalc(uint16_t speed, uint16_t max_ticks, uint16_t *nticks)
{
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) || (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
// Clock divider (prescaler) values - 0/3333: error flag
uint8_t prescaler; // index into array & return bit value
unsigned long ulticks; // calculate by ntick overflow
// Div-by-zero protection
if (speed == 0)
{
// signal fault
*nticks = 0;
return 0;
}
// test increasing prescaler (divisor), decreasing ulticks until no overflow
// 1/Fraction of second needed to xmit one bit
unsigned long inv_bit_time = ((unsigned long)speed) * 8;
for (prescaler=1; prescaler < NUM_PRESCALERS; prescaler += 1)
{
// Integer arithmetic courtesy Jim Remington
// 1/Amount of time per CPU clock tick (in seconds)
uint16_t prescalerValue;
memcpy_P(&prescalerValue, &prescalers[prescaler], sizeof(uint16_t));
unsigned long inv_clock_time = F_CPU / ((unsigned long)prescalerValue);
// number of prescaled ticks needed to handle bit time @ speed
ulticks = inv_clock_time / inv_bit_time;
// Test if ulticks fits in nticks bitwidth (with 1-tick safety margin)
if ((ulticks > 1) && (ulticks < max_ticks))
break; // found prescaler
// Won't fit, check with next prescaler value
}
// Check for error
if ((prescaler == 6) || (ulticks < 2) || (ulticks > max_ticks))
{
// signal fault
*nticks = 0;
return 0;
}
*nticks = ulticks;
return prescaler;
#else
return 0; // not implemented or needed on other platforms
#endif
}
// The idea here is to get 8 timer interrupts per bit period
void RH_ASK::timerSetup()
{
#if (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
uint16_t nticks;
uint8_t prescaler = timerCalc(_speed, (uint16_t)-1, &nticks);
if (!prescaler) return;
_COMB(TCCR,RH_ASK_TIMER_INDEX,A)= 0;
_COMB(TCCR,RH_ASK_TIMER_INDEX,B)= _BV(WGM12);
_COMB(TCCR,RH_ASK_TIMER_INDEX,B)|= prescaler;
_COMB(OCR,RH_ASK_TIMER_INDEX,A)= nticks;
_COMB(TI,MSK,RH_ASK_TIMER_INDEX)|= _BV(_COMB(OCIE,RH_ASK_TIMER_INDEX,A));
#elif (RH_PLATFORM == RH_PLATFORM_MSP430) // LaunchPad specific
// Calculate the counter overflow count based on the required bit speed
// and CPU clock rate
uint16_t ocr1a = (F_CPU / 8UL) / _speed;
// This code is for Energia/MSP430
TA0CCR0 = ocr1a; // Ticks for 62,5 us
TA0CTL = TASSEL_2 + MC_1; // SMCLK, up mode
TA0CCTL0 |= CCIE; // CCR0 interrupt enabled
#elif (RH_PLATFORM == RH_PLATFORM_ARDUINO) // Arduino specific
uint16_t nticks; // number of prescaled ticks needed
uint8_t prescaler; // Bit values for CS0[2:0]
#ifdef RH_PLATFORM_ATTINY
// figure out prescaler value and counter match value
// REVISIT: does not correctly handle 1MHz clock speeds, only works with 8MHz clocks
// At 1MHz clock, get 1/8 of the expected baud rate
prescaler = timerCalc(_speed, (uint8_t)-1, &nticks);
if (!prescaler)
return; // fault
TCCR0A = 0;
TCCR0A = _BV(WGM01); // Turn on CTC mode / Output Compare pins disconnected
// convert prescaler index to TCCRnB prescaler bits CS00, CS01, CS02
TCCR0B = 0;
TCCR0B = prescaler; // set CS00, CS01, CS02 (other bits not needed)
// Number of ticks to count before firing interrupt
OCR0A = uint8_t(nticks);
// Set mask to fire interrupt when OCF0A bit is set in TIFR0
#ifdef TIMSK0
// ATtiny84
TIMSK0 |= _BV(OCIE0A);
#else
// ATtiny85
TIMSK |= _BV(OCIE0A);
#endif
#elif defined(__arm__) && defined(CORE_TEENSY)
// on Teensy 3.0 (32 bit ARM), use an interval timer
IntervalTimer *t = new IntervalTimer();
void TIMER1_COMPA_vect(void);
t->begin(TIMER1_COMPA_vect, 125000 / _speed);
#elif defined(__arm__)
// Arduino Due
// Due has 9 timers in 3 blocks of 3.
// We use timer 1 TC1_IRQn on TC0 channel 1, since timers 0, 2, 3, 4, 5 are used by the Servo library
#define RH_ASK_DUE_TIMER TC0
#define RH_ASK_DUE_TIMER_CHANNEL 1
#define RH_ASK_DUE_TIMER_IRQ TC1_IRQn
pmc_set_writeprotect(false);
pmc_enable_periph_clk(RH_ASK_DUE_TIMER_IRQ);
// Clock speed 4 can handle all reasonable _speeds we might ask for. Its divisor is 128
// and we want 8 interrupts per bit
uint32_t rc = (VARIANT_MCK / _speed) / 128 / 8;
TC_Configure(RH_ASK_DUE_TIMER, RH_ASK_DUE_TIMER_CHANNEL,
TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_TCCLKS_TIMER_CLOCK4);
TC_SetRC(RH_ASK_DUE_TIMER, RH_ASK_DUE_TIMER_CHANNEL, rc);
// Enable the RC Compare Interrupt
RH_ASK_DUE_TIMER->TC_CHANNEL[RH_ASK_DUE_TIMER_CHANNEL].TC_IER = TC_IER_CPCS;
NVIC_ClearPendingIRQ(RH_ASK_DUE_TIMER_IRQ);
NVIC_EnableIRQ(RH_ASK_DUE_TIMER_IRQ);
TC_Start(RH_ASK_DUE_TIMER, RH_ASK_DUE_TIMER_CHANNEL);
#else
// This is the path for most Arduinos
// figure out prescaler value and counter match value
#if defined(RH_ASK_ARDUINO_USE_TIMER2)
prescaler = timerCalc(_speed, (uint8_t)-1, &nticks);
if (!prescaler)
return; // fault
// Use timer 2
TCCR2A = _BV(WGM21); // Turn on CTC mode)
// convert prescaler index to TCCRnB prescaler bits CS10, CS11, CS12
TCCR2B = prescaler;
// Caution: special procedures for setting 16 bit regs
// is handled by the compiler
OCR2A = nticks;
// Enable interrupt
#ifdef TIMSK2
// atmega168
TIMSK2 |= _BV(OCIE2A);
#else
// others
TIMSK |= _BV(OCIE2A);
#endif // TIMSK2
#else
// Use timer 1
prescaler = timerCalc(_speed, (uint16_t)-1, &nticks);
if (!prescaler)
return; // fault
TCCR1A = 0; // Output Compare pins disconnected
TCCR1B = _BV(WGM12); // Turn on CTC mode
// convert prescaler index to TCCRnB prescaler bits CS10, CS11, CS12
TCCR1B |= prescaler;
// Caution: special procedures for setting 16 bit regs
// is handled by the compiler
OCR1A = nticks;
// Enable interrupt
#ifdef TIMSK1
// atmega168
TIMSK1 |= _BV(OCIE1A);
#else
// others
TIMSK |= _BV(OCIE1A);
#endif // TIMSK1
#endif
#endif
#elif (RH_PLATFORM == RH_PLATFORM_STM32) // Maple etc
// Pause the timer while we're configuring it
timer.pause();
timer.setPeriod((1000000/8)/_speed);
// Set up an interrupt on channel 1
timer.setChannel1Mode(TIMER_OUTPUT_COMPARE);
timer.setCompare(TIMER_CH1, 1); // Interrupt 1 count after each update
void interrupt(); // defined below
timer.attachCompare1Interrupt(interrupt);
// Refresh the timer's count, prescale, and overflow
timer.refresh();
// Start the timer counting
timer.resume();
#elif (RH_PLATFORM == RH_PLATFORM_UNO32)
// ON Uno32 we use timer1
OpenTimer1(T1_ON | T1_PS_1_1 | T1_SOURCE_INT, (F_CPU / 8) / _speed);
ConfigIntTimer1(T1_INT_ON | T1_INT_PRIOR_1);
#endif
}
void RH_ASK::setModeIdle()
{
if (_mode != RHModeIdle)
{
// Disable the transmitter hardware
writePtt(LOW);
writeTx(LOW);
_mode = RHModeIdle;
}
}
void RH_ASK::setModeRx()
{
if (_mode != RHModeRx)
{
// Disable the transmitter hardware
writePtt(LOW);
writeTx(LOW);
_mode = RHModeRx;
}
}
void RH_ASK::setModeTx()
{
if (_mode != RHModeTx)
{
// PRepare state varibles for a new transmission
_txIndex = 0;
_txBit = 0;
_txSample = 0;
// Enable the transmitter hardware
writePtt(HIGH);
_mode = RHModeTx;
}
}
// Call this often
bool RH_ASK::available()
{
if (_mode == RHModeTx)
return false;
setModeRx();
if (_rxBufFull)
{
validateRxBuf();
_rxBufFull= false;
}
return _rxBufValid;
}
bool RH_ASK::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
// Skip the length and 4 headers that are at the beginning of the rxBuf
// and drop the trailing 2 bytes of FCS
uint8_t message_len = _rxBufLen-RH_ASK_HEADER_LEN - 3;
if (*len > message_len)
*len = message_len;
memcpy(buf, _rxBuf+RH_ASK_HEADER_LEN+1, *len);
}
_rxBufValid = false; // Got the most recent message, delete it
// printBuffer("recv:", buf, *len);
return true;
}
// Caution: this may block
bool RH_ASK::send(const uint8_t* data, uint8_t len)
{
uint8_t i;
uint16_t index = 0;
uint16_t crc = 0xffff;
uint8_t *p = _txBuf + RH_ASK_PREAMBLE_LEN; // start of the message area
uint8_t count = len + 3 + RH_ASK_HEADER_LEN; // Added byte count and FCS and headers to get total number of bytes
if (len > RH_ASK_MAX_MESSAGE_LEN)
return false;
// Wait for transmitter to become available
waitPacketSent();
// Encode the message length
crc = RHcrc_ccitt_update(crc, count);
p[index++] = symbols[count >> 4];
p[index++] = symbols[count & 0xf];
// Encode the headers
crc = RHcrc_ccitt_update(crc, _txHeaderTo);
p[index++] = symbols[_txHeaderTo >> 4];
p[index++] = symbols[_txHeaderTo & 0xf];
crc = RHcrc_ccitt_update(crc, _txHeaderFrom);
p[index++] = symbols[_txHeaderFrom >> 4];
p[index++] = symbols[_txHeaderFrom & 0xf];
crc = RHcrc_ccitt_update(crc, _txHeaderId);
p[index++] = symbols[_txHeaderId >> 4];
p[index++] = symbols[_txHeaderId & 0xf];
crc = RHcrc_ccitt_update(crc, _txHeaderFlags);
p[index++] = symbols[_txHeaderFlags >> 4];
p[index++] = symbols[_txHeaderFlags & 0xf];
// Encode the message into 6 bit symbols. Each byte is converted into
// 2 6-bit symbols, high nybble first, low nybble second
for (i = 0; i < len; i++)
{
crc = RHcrc_ccitt_update(crc, data[i]);
p[index++] = symbols[data[i] >> 4];
p[index++] = symbols[data[i] & 0xf];
}
// Append the fcs, 16 bits before encoding (4 6-bit symbols after encoding)
// Caution: VW expects the _ones_complement_ of the CCITT CRC-16 as the FCS
// VW sends FCS as low byte then hi byte
crc = ~crc;
p[index++] = symbols[(crc >> 4) & 0xf];
p[index++] = symbols[crc & 0xf];
p[index++] = symbols[(crc >> 12) & 0xf];
p[index++] = symbols[(crc >> 8) & 0xf];
// Total number of 6-bit symbols to send
_txBufLen = index + RH_ASK_PREAMBLE_LEN;
printBuffer("", _txBuf, _txBufLen);
// Start the low level interrupt handler sending symbols
setModeTx();
// FIXME
thisASKDriver = this;
return true;
}
// Read the RX data input pin, taking into account platform type and inversion.
bool RH_ASK::readRx()
{
bool value;
#if (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
value = ((RH_ASK_RX_PORT & (1<<RH_ASK_RX_PIN)) ? 1 : 0);
#else
value = digitalRead(_rxPin);
#endif
return value ^ _rxInverted;
}
// Write the TX output pin, taking into account platform type.
void RH_ASK::writeTx(bool value)
{
#if (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
((value) ? (RH_ASK_TX_PORT |= (1<<RH_ASK_TX_PIN)) : (RH_ASK_TX_PORT &= ~(1<<RH_ASK_TX_PIN)));
#else
digitalWrite(_txPin, value);
#endif
}
// Write the PTT output pin, taking into account platform type and inversion.
void RH_ASK::writePtt(bool value)
{
#if (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
#if RH_ASK_PTT_PIN
((value) ? (RH_ASK_PTT_PORT |= (1<<RH_ASK_PTT_PIN)) : (RH_ASK_PTT_PORT &= ~(1<<RH_ASK_PTT_PIN)));
#else
((value) ? (RH_ASK_TX_PORT |= (1<<RH_ASK_TX_PIN)) : (RH_ASK_TX_PORT &= ~(1<<RH_ASK_TX_PIN)));
#endif
#else
digitalWrite(_pttPin, value ^ _pttInverted);
#endif
}
uint8_t RH_ASK::maxMessageLength()
{
return RH_ASK_MAX_MESSAGE_LEN;
}
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO)
#if defined(RH_PLATFORM_ATTINY)
#define RH_ASK_TIMER_VECTOR TIM0_COMPA_vect
#else // Assume Arduino Uno (328p or similar)
#if defined(RH_ASK_ARDUINO_USE_TIMER2)
#define RH_ASK_TIMER_VECTOR TIMER2_COMPA_vect
#else
#define RH_ASK_TIMER_VECTOR TIMER1_COMPA_vect
#endif
#endif
#elif (RH_ASK_PLATFORM == RH_ASK_PLATFORM_GENERIC_AVR8)
#define __COMB(a,b,c) (a##b##c)
#define _COMB(a,b,c) __COMB(a,b,c)
#define RH_ASK_TIMER_VECTOR _COMB(TIMER,RH_ASK_TIMER_INDEX,_COMPA_vect)
#endif
#if (RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined(__arm__) && defined(CORE_TEENSY)
void TIMER1_COMPA_vect(void)
{
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_ARDUINO) && defined(__arm__)
// Arduino Due
void TC1_Handler()
{
TC_GetStatus(TC0, 1);
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_ARDUINO) || (RH_PLATFORM == RH_PLATFORM_GENERIC_AVR8)
// This is the interrupt service routine called when timer1 overflows
// Its job is to output the next bit from the transmitter (every 8 calls)
// and to call the PLL code if the receiver is enabled
//ISR(SIG_OUTPUT_COMPARE1A)
ISR(RH_ASK_TIMER_VECTOR)
{
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_MSP430) || (RH_PLATFORM == RH_PLATFORM_STM32)
// LaunchPad, Maple
void interrupt()
{
thisASKDriver->handleTimerInterrupt();
}
#elif (RH_PLATFORM == RH_PLATFORM_MSP430)
interrupt(TIMER0_A0_VECTOR) Timer_A_int(void)
{
thisASKDriver->handleTimerInterrupt();
};
#elif (RH_PLATFORM == RH_PLATFORM_UNO32)
extern "C"
{
void __ISR(_TIMER_1_VECTOR, ipl1) timerInterrupt(void)
{
thisASKDriver->handleTimerInterrupt();
mT1ClearIntFlag(); // Clear timer 1 interrupt flag
}
}
#endif
// Convert a 6 bit encoded symbol into its 4 bit decoded equivalent
uint8_t RH_ASK::symbol_6to4(uint8_t symbol)
{
uint8_t i;
uint8_t count;
// Linear search :-( Could have a 64 byte reverse lookup table?
// There is a little speedup here courtesy Ralph Doncaster:
// The shortcut works because bit 5 of the symbol is 1 for the last 8
// symbols, and it is 0 for the first 8.
// So we only have to search half the table
for (i = (symbol>>2) & 8, count=8; count-- ; i++)
if (symbol == symbols[i]) return i;
return 0; // Not found
}
// Check whether the latest received message is complete and uncorrupted
// We should always check the FCS at user level, not interrupt level
// since it is slow
void RH_ASK::validateRxBuf()
{
uint16_t crc = 0xffff;
// The CRC covers the byte count, headers and user data
for (uint8_t i = 0; i < _rxBufLen; i++)
crc = RHcrc_ccitt_update(crc, _rxBuf[i]);
if (crc != 0xf0b8) // CRC when buffer and expected CRC are CRC'd
{
// Reject and drop the message
_rxBad++;
_rxBufValid = false;
return;
}
Serial.print("CRC: ");
Serial.println(crc, HEX);
// Extract the 4 headers that follow the message length
_rxHeaderTo = _rxBuf[1];
_rxHeaderFrom = _rxBuf[2];
_rxHeaderId = _rxBuf[3];
_rxHeaderFlags = _rxBuf[4];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS)
{
_rxGood++;
_rxBufValid = true;
}
}
void RH_ASK::receiveTimer()
{
bool rxSample = readRx();
// Integrate each sample
if (rxSample)
_rxIntegrator++;
if (rxSample != _rxLastSample)
{
// Transition, advance if ramp > 80, retard if < 80
_rxPllRamp += ((_rxPllRamp < RH_ASK_RAMP_TRANSITION)
? RH_ASK_RAMP_INC_RETARD
: RH_ASK_RAMP_INC_ADVANCE);
_rxLastSample = rxSample;
}
else
{
// No transition
// Advance ramp by standard 20 (== 160/8 samples)
_rxPllRamp += RH_ASK_RAMP_INC;
}
if (_rxPllRamp >= RH_ASK_RX_RAMP_LEN)
{
// Add this to the 12th bit of _rxBits, LSB first
// The last 12 bits are kept
_rxBits >>= 1;
// Check the integrator to see how many samples in this cycle were high.
// If < 5 out of 8, then its declared a 0 bit, else a 1;
if (_rxIntegrator >= 5)
_rxBits |= 0x800;
_rxPllRamp -= RH_ASK_RX_RAMP_LEN;
_rxIntegrator = 0; // Clear the integral for the next cycle
if (_rxActive)
{
// We have the start symbol and now we are collecting message bits,
// 6 per symbol, each which has to be decoded to 4 bits
if (++_rxBitCount >= 12)
{
// Have 12 bits of encoded message == 1 byte encoded
// Decode as 2 lots of 6 bits into 2 lots of 4 bits
// The 6 lsbits are the high nybble
uint8_t this_byte =
(symbol_6to4(_rxBits & 0x3f)) << 4
| symbol_6to4(_rxBits >> 6);
// The first decoded byte is the byte count of the following message
// the count includes the byte count and the 2 trailing FCS bytes
// REVISIT: may also include the ACK flag at 0x40
if (_rxBufLen == 0)
{
// The first byte is the byte count
// Check it for sensibility. It cant be less than 7, since it
// includes the byte count itself, the 4 byte header and the 2 byte FCS
_rxCount = this_byte;
if (_rxCount < 7 || _rxCount > RH_ASK_MAX_PAYLOAD_LEN)
{
// Stupid message length, drop the whole thing
_rxActive = false;
_rxBad++;
return;
}
}
Serial.print(_rxBits, HEX);
Serial.print(" ");
Serial.print(this_byte, HEX);
Serial.print(" ");
Serial.println(_rxBufLen);
_rxBuf[_rxBufLen++] = this_byte;
if (_rxBufLen >= _rxCount)
{
// Got all the bytes now
_rxActive = false;
_rxBufFull = true;
setModeIdle();
}
_rxBitCount = 0;
}
}
// Not in a message, see if we have a start symbol
else if (_rxBits == RH_ASK_START_SYMBOL)
{
// Have start symbol, start collecting message
_rxActive = true;
_rxBitCount = 0;
_rxBufLen = 0;
}
}
}
void RH_ASK::transmitTimer()
{
if (_txSample++ == 0)
{
// Send next bit
// Symbols are sent LSB first
// Finished sending the whole message? (after waiting one bit period
// since the last bit)
if (_txIndex >= _txBufLen)
{
setModeIdle();
_txGood++;
}
else
{
writeTx(_txBuf[_txIndex] & (1 << _txBit++));
if (_txBit >= 6)
{
_txBit = 0;
_txIndex++;
}
}
}
if (_txSample > 7)
_txSample = 0;
}
void RH_ASK::handleTimerInterrupt()
{
if (_mode == RHModeRx)
receiveTimer(); // Receiving
else if (_mode == RHModeTx)
transmitTimer(); // Transmitting
}
对不起,我必须链接到我自己的来源,否则此帖子大于30k字符。它可以找到here。
#ifdef WIN32用于在Visual Studio中开发它而没有抱怨Intellisense,你应该忽略它
我确定引脚的布线和设置是正确的。