我正在尝试将MongoDB与Apache Spark集成以处理数据。这是我的(虚拟)代码:
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import org.apache.hadoop.conf.Configuration;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.bson.BSONObject;
import org.bson.BasicBSONObject;
import java.util.Comparator;
import scala.Tuple2;
import com.mongodb.hadoop.MongoOutputFormat;
import com.mongodb.hadoop.MongoInputFormat;
import com.mongodb.hadoop.BSONFileOutputFormat;
public final class JavaWordCount {
public static void main(String[] args) {
String input = args[0];
String output = args[1];
JavaSparkContext sc = new JavaSparkContext();
Configuration config = new Configuration();
config.set("mongo.input.uri", "mongodb://127.0.0.1:27017/" + input);
config.set("mongo.job.input.format", "com.mongodb.hadoop.MongoInputFormat");
//I have tryed with the same configuration for both too
Configuration outputConfig = new Configuration();
outputConfig.set("mongo.output.format",
"com.mongodb.hadoop.MongoOutputFormat");
outputConfig.set("mongo.output.uri",
"mongodb://localhost:27017/" + output);
JavaPairRDD<Object, BSONObject> mongoRDD = sc.newAPIHadoopRDD(config, com.mongodb.hadoop.MongoInputFormat.class, Object.class, BSONObject.class);
// Input contains tuples of (ObjectId, BSONObject)
JavaRDD<String> words = mongoRDD.flatMap(new FlatMapFunction<Tuple2<Object, BSONObject>, String>() {
@Override
public Iterable<String> call(Tuple2<Object, BSONObject> arg) {
Object o = arg._2.get("user");
if (o instanceof String) {
String str = (String) o;
return Arrays.asList(str);
} else {
return Collections.emptyList();
}
}
});
JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) {
return new Tuple2<>(s, 1);
}
});
// Output contains tuples of (null, BSONObject) - ObjectId will be generated by Mongo driver if null
JavaPairRDD<Object, BSONObject> save = ones.mapToPair(new PairFunction<Tuple2<String, Integer>, Object, BSONObject>() {
@Override
public Tuple2<Object, BSONObject> call(Tuple2<String, Integer> tuple) {
BSONObject bson = new BasicBSONObject();
bson.put("word", tuple._1);
//bson.put("count", tuple._2);
return new Tuple2<>(null, bson);
}
});
// Only MongoOutputFormat and config are relevant
save.saveAsNewAPIHadoopFile("file:///bogus", Object.class, BSONObject.class, MongoOutputFormat.class, outputConfig);
}
}
它与sbt完美编译并使用
工作../spark-1.2.1-bin-hadoop2.4/bin/spark-subt --master local --jars $(echo /home/luis/mongodb_old/mongo-spark/mongo-spark-master-3/lib/*.jar | tr ' ' ',') --class "JavaWordCount" target/scala-2.10/mongo-spark_2.10-1.0.jar mydb.testCollection mydb.output
但如果我尝试
../spark-1.2.1-bin-hadoop2.4/bin/spark-subt --master spark://luis:7077 --jars $(echo /home/luis/mongodb_old/mongo-spark/mongo-spark-master-3/lib/*.jar | tr ' ' ',') --class "JavaWordCount" target/scala-2.10/mongo-spark_2.10-1.0.jar mydb.testCollection mydb.output
(即,在独立群集中而不是本地群集中执行它)我收到以下错误:
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 6 in stage 0.0 failed 4 times, most recent failure: Lost task 6.3 in stage 0.0 (TID 23, ip184.com.uvigo.es): java.lang.IllegalStateException: open
at org.bson.util.Assertions.isTrue(Assertions.java:36)
at com.mongodb.DBTCPConnector.getPrimaryPort(DBTCPConnector.java:406)
at com.mongodb.DBCollectionImpl.insert(DBCollectionImpl.java:184)
at com.mongodb.DBCollectionImpl.insert(DBCollectionImpl.java:167)
at com.mongodb.DBCollection.insert(DBCollection.java:161)
at com.mongodb.DBCollection.insert(DBCollection.java:107)
at com.mongodb.DBCollection.save(DBCollection.java:1049)
at com.mongodb.DBCollection.save(DBCollection.java:1014)
at com.mongodb.hadoop.output.MongoRecordWriter.write(MongoRecordWriter.java:105)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$12.apply(PairRDDFunctions.scala:993)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$12.apply(PairRDDFunctions.scala:969)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:56)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:200)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420)
at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
at akka.actor.ActorCell.invoke(ActorCell.scala:487)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
at akka.dispatch.Mailbox.run(Mailbox.scala:220)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
15/03/02 13:31:26 INFO TaskSetManager: Lost task 8.1 in stage 0.0 (TID 22) on executor ip184.com.uvigo.es: java.lang.IllegalStateException (open) [duplicate 2]
我已尝试在Spark-Submit exception SparkException: Job aborted due to stage failure发布的解决方案,但它没有修复它。我还阅读了很多其他帖子,但我找不到解决方案。
任何帮助都将不胜感激。
P.S。:我已经尝试在发布之前遵循所有规则,但这是我在stackoverflow中的第一篇文章,所以如果我犯了任何错误,我道歉并承诺不再这样做。
提前致谢。
编辑: 我已升级到最新版本的Spark和MongoDB。我一直得到同样的例外,但它似乎是在内部捕获的,所以这个过程并没有停止。但是,导致异常的数据未经处理,因此每次执行后都会得到不同的结果。这就是我现在得到的:
15/03/23 17:05:34 WARN TaskSetManager: Lost task 0.1 in stage 0.0 (TID 4, 10.0.2.15): java.lang.IllegalStateException: open
at org.bson.util.Assertions.isTrue(Assertions.java:36)
at com.mongodb.DBTCPConnector.getPrimaryPort(DBTCPConnector.java:406)
at com.mongodb.DBCollectionImpl.insert(DBCollectionImpl.java:184)
at com.mongodb.DBCollectionImpl.insert(DBCollectionImpl.java:167)
at com.mongodb.DBCollection.insert(DBCollection.java:161)
at com.mongodb.DBCollection.insert(DBCollection.java:107)
at com.mongodb.DBCollection.save(DBCollection.java:1049)
at com.mongodb.DBCollection.save(DBCollection.java:1014)
at com.mongodb.hadoop.output.MongoRecordWriter.write(MongoRecordWriter.java:105)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$12.apply(PairRDDFunctions.scala:1000)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$12.apply(PairRDDFunctions.scala:979)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:64)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
编辑2: 我试图阅读的MongoDB集合有大约30,000个文档。我刚尝试了一个只有10,000个,它就像一个魅力,但它似乎不是一个非常好的解决方案。它能是什么? 提前谢谢。
答案 0 :(得分:0)
您的输出mongodb服务器似乎配置为:
"mongodb://localhost:27017/"
你确定吗?它不应该是你所有工人都可以到达的正确的远程地址吗?
此致