org.apache.spark.SparkException:作业因阶段失败而中止:来自应用程序的任务

时间:2014-11-12 17:00:13

标签: apache-spark

我在独立群集上运行spark应用程序时遇到问题。 (我使用spark 1.1.0版本)。 我通过命令成功运行主服务器:

bash start-master.sh 

然后我按命令运行一个工人:

bash spark-class org.apache.spark.deploy.worker.Worker spark://fujitsu11:7077

在主人的网络用户界面:

http://localhost:8080  

我知道,主人和工人正在跑步。

然后我从Eclipse Luna运行我的应用程序。我通过命令

成功连接到群集
JavaSparkContext sc = new JavaSparkContext("spark://fujitsu11:7077", "myapplication");

在该应用程序工作之后,但是当程序实现以下代码时:

 JavaRDD<Document> collectionRdd = sc.parallelize(list);

崩溃时出现以下错误消息:

 org.apache.spark.SparkException: Job aborted due to stage failure: Task 7 in stage 0.0 failed 4 times, most recent failure: Lost task 7.3 in stage 0.0 (TID 11, fujitsu11.inevm.ru):java.lang.ClassNotFoundException: maven.maven1.Document
 java.net.URLClassLoader$1.run(URLClassLoader.java:366)
 java.net.URLClassLoader$1.run(URLClassLoader.java:355)
 java.security.AccessController.doPrivileged(Native Method)
 java.net.URLClassLoader.findClass(URLClassLoader.java:354)
  java.lang.ClassLoader.loadClass(ClassLoader.java:425)
    java.lang.ClassLoader.loadClass(ClassLoader.java:358)
    java.lang.Class.forName0(Native Method)
    java.lang.Class.forName(Class.java:270)
    org.apache.spark.serializer.JavaDeserializationStream$$anon$1.resolveClass(JavaSerializer.scala:59)
    java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1612)
    java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1517)
    java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1771)
    java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
    java.io.ObjectInputStream.readArray(ObjectInputStream.java:1706)
    java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1344)
    java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
    java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
    java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
    java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
    java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
    java.io.ObjectInputStream.defaultReadObject(ObjectInputStream.java:500)
    org.apache.spark.rdd.ParallelCollectionPartition.readObject(ParallelCollectionRDD.scala:74)
    sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    java.lang.reflect.Method.invoke(Method.java:606)
    java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017)
    java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893)
    java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
    java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
    java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
    java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
    java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
    java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
    java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
    org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:62)
    org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:87)
    org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:159)
    java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    java.lang.Thread.run(Thread.java:744)
 Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)

在shell中我发现:

14/11/12 18:46:06 INFO ExecutorRunner: Launch command: "C:\PROGRA~1\Java\jdk1.7.0_51/bin/java"  "-cp" ";;D:\spark\bin\..\conf;D:\spark\bin\..\lib\spark-assembly-
1.1.0-hadoop1.0.4.jar;;D:\spark\bin\..\lib\datanucleus-api-jdo-3.2.1.jar;D:\spar
k\bin\..\lib\datanucleus-core-3.2.2.jar;D:\spark\bin\..\lib\datanucleus-rdbms-3.
2.1.jar" "-XX:MaxPermSize=128m" "-Dspark.driver.port=50913" "-Xms512M" "-Xmx512M
" "org.apache.spark.executor.CoarseGrainedExecutorBackend" "akka.tcp://sparkDriv
er@fujitsu11.inevm.ru:50913/user/CoarseGrainedScheduler" "0" "fujitsu11.inevm.ru
" "8" "akka.tcp://sparkWorker@fujitsu11.inevm.ru:50892/user/Worker" "app-2014111
2184605-0000"
14/11/12 18:46:40 INFO Worker: Asked to kill executor app-20141112184605-0000/0
14/11/12 18:46:40 INFO ExecutorRunner: Runner thread for executor app-2014111218
4605-0000/0 interrupted
14/11/12 18:46:40 INFO ExecutorRunner: Killing process!
14/11/12 18:46:40 INFO Worker: Executor app-20141112184605-0000/0 finished with
state KILLED exitStatus 1
14/11/12 18:46:40 INFO LocalActorRef: Message [akka.remote.transport.ActorTransp
ortAdapter$DisassociateUnderlying] from Actor[akka://sparkWorker/deadLetters] to
Actor[akka://sparkWorker/system/transports/akkaprotocolmanager.tcp0/akkaProtoco
l-tcp%3A%2F%2FsparkWorker%40192.168.3.5%3A50955-2#1066511138] was not delivered.
[1] dead letters encountered. This logging can be turned off or adjusted with c
onfiguration settings 'akka.log-dead-letters' and 'akka.log-dead-letters-during-
shutdown'.
14/11/12 18:46:40 INFO LocalActorRef: Message [akka.remote.transport.Association
Handle$Disassociated] from Actor[akka://sparkWorker/deadLetters] to Actor[akka:/
/sparkWorker/system/transports/akkaprotocolmanager.tcp0/akkaProtocol-tcp%3A%2F%2
FsparkWorker%40192.168.3.5%3A50955-2#1066511138] was not delivered. [2] dead let
ters encountered. This logging can be turned off or adjusted with configuration
settings 'akka.log-dead-letters' and 'akka.log-dead-letters-during-shutdown'.
14/11/12 18:46:41 ERROR EndpointWriter: AssociationError [akka.tcp://sparkWorker
@fujitsu11.inevm.ru:50892] -> [akka.tcp://sparkExecutor@fujitsu11.inevm.ru:50954
]: Error [Association failed with [akka.tcp://sparkExecutor@fujitsu11.inevm.ru:5
0954]] [
akka.remote.EndpointAssociationException: Association failed with [akka.tcp://sp
arkExecutor@fujitsu11.inevm.ru:50954]
Caused by: akka.remote.transport.netty.NettyTransport$$anonfun$associate$1$$anon
$2: Connection refused: no further information: fujitsu11.inevm.ru/192.168.3.5:5
0954
]
14/11/12 18:46:42 ERROR EndpointWriter: AssociationError [akka.tcp://sparkWorker
@fujitsu11.inevm.ru:50892] -> [akka.tcp://sparkExecutor@fujitsu11.inevm.ru:50954
]: Error [Association failed with [akka.tcp://sparkExecutor@fujitsu11.inevm.ru:5
0954]] [
akka.remote.EndpointAssociationException: Association failed with [akka.tcp://sp
arkExecutor@fujitsu11.inevm.ru:50954]
Caused by: akka.remote.transport.netty.NettyTransport$$anonfun$associate$1$$anon
$2: Connection refused: no further information: fujitsu11.inevm.ru/192.168.3.5:5
0954
]
14/11/12 18:46:43 ERROR EndpointWriter: AssociationError [akka.tcp://sparkWorker
@fujitsu11.inevm.ru:50892] -> [akka.tcp://sparkExecutor@fujitsu11.inevm.ru:50954
]: Error [Association failed with [akka.tcp://sparkExecutor@fujitsu11.inevm.ru:5
0954]] [
akka.remote.EndpointAssociationException: Association failed with [akka.tcp://sp
arkExecutor@fujitsu11.inevm.ru:50954]
Caused by: akka.remote.transport.netty.NettyTransport$$anonfun$associate$1$$anon
$2: Connection refused: no further information: fujitsu11.inevm.ru/192.168.3.5:5
0954
]

在日志中:

14/11/12 18:46:41 ERROR EndpointWriter: AssociationError    [akka.tcp://sparkMaster@fujitsu11:7077]     -> [akka.tcp://sparkDriver@fujitsu11.inevm.ru:50913]:   Error [Association failed with [akka.tcp://sparkDriver@fujitsu11.inevm.ru:50913]] [
akka.remote.EndpointAssociationException: Association failed with   [akka.tcp://sparkDriver@fujitsu11.inevm.ru:50913]
Caused by: akka.remote.transport.netty.NettyTransport$$anonfun$associate$1$$anon$2: Connection  refused: no further information: fujitsu11.inevm.ru/192.168.3.5:50913
]
14/11/12 18:46:42 INFO Master: akka.tcp://sparkDriver@fujitsu11.inevm.ru:50913 got disassociated,   removing it.
14/11/12 18:46:42 ERROR EndpointWriter: AssociationError [akka.tcp://sparkMaster@fujitsu11:7077] -> [akka.tcp://sparkDriver@fujitsu11.inevm.ru:50913]: Error [Association failed with   [akka.tcp://sparkDriver@fujitsu11.inevm.ru:50913]] [
akka.remote.EndpointAssociationException: Association failed with   [akka.tcp://sparkDriver@fujitsu11.inevm.ru:50913]
Caused by: akka.remote.transport.netty.NettyTransport$$anonfun$associate$1$$anon$2: Connection  refused: no further information: fujitsu11.inevm.ru/192.168.3.5:50913
]
14/11/12 18:46:43 ERROR EndpointWriter: AssociationError [akka.tcp://sparkMaster@fujitsu11:7077] -> [akka.tcp://sparkDriver@fujitsu11.inevm.ru:50913]: Error [Association failed with   [akka.tcp://sparkDriver@fujitsu11.inevm.ru:50913]] [
akka.remote.EndpointAssociationException: Association failed with   [akka.tcp://sparkDriver@fujitsu11.inevm.ru:50913]
Caused by: akka.remote.transport.netty.NettyTransport$$anonfun$associate$1$$anon$2: Connection  refused: no further information: fujitsu11.inevm.ru/192.168.3.5:50913
]

我google了很多但我不知道什么是错的... 我在这里找到了类似的讨论:

https://github.com/datastax/spark-cassandra-connector/issues/187

但它并没有解决我的问题...

有人知道什么是错的?

谢谢。

3 个答案:

答案 0 :(得分:4)

为了解决此问题的其他人的利益:

由于火花连接器与使用的火花版本不匹配,我遇到了同样的问题。 Spark为1.3.1,连接器为1.3.0,出现了相同的错误消息:

org.apache.spark.SparkException: Job aborted due to stage failure:
  Task 2 in stage 0.0 failed 4 times, most recent failure: Lost 
  task 2.3 in stage 0.0

在SBT中更新依赖性解决了这个问题。

答案 1 :(得分:3)

找到一种使用IDE / Maven

运行它的方法
  1. 创建一个Fat Jar(包含所有依赖项的一个)。为此使用Shade插件。示例pom:
  2. <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-shade-plugin</artifactId>
        <version>2.2</version>
        <configuration>
            <filters>
                <filter>
                    <artifact>*:*</artifact>
                    <excludes>
                        <exclude>META-INF/*.SF</exclude>
                        <exclude>META-INF/*.DSA</exclude>
                        <exclude>META-INF/*.RSA</exclude>
                    </excludes>
                </filter>
            </filters>
        </configuration>
        <executions>
            <execution>
                <id>job-driver-jar</id>
                <phase>package</phase>
                <goals>
                    <goal>shade</goal>
                </goals>
                <configuration>
                    <shadedArtifactAttached>true</shadedArtifactAttached>
                    <shadedClassifierName>driver</shadedClassifierName>
                    <transformers>
                        <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
                        <!--
                        Some care is required:
                        http://doc.akka.io/docs/akka/snapshot/general/configuration.html
                        -->
                        <transformer implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
                            <resource>reference.conf</resource>
                        </transformer>
                        <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                            <mainClass>mainClass</mainClass>
                        </transformer>
                    </transformers>
                </configuration>
            </execution>
            <execution>
                <id>worker-library-jar</id>
                <phase>package</phase>
                <goals>
                    <goal>shade</goal>
                </goals>
                <configuration>
                    <shadedArtifactAttached>true</shadedArtifactAttached>
                    <shadedClassifierName>worker</shadedClassifierName>
                    <transformers>
                        <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
                    </transformers>
                </configuration>
            </execution>
        </executions>
    </plugin>
    
    1. 现在我们必须将已编译的jar文件发送到集群。为此,请在spark配置中指定jar文件,如下所示:
    2.   

      SparkConf conf = new   。SparkConf()setAppName( “APPNAME”).setMaster( “火花://机器:7077”).setJars(新   String [] {“target / appName-1.0-SNAPSHOT-driver.jar”});

      1. 运行mvn clean包以创建Jar文件。它将在目标文件夹中创建。

      2. 使用IDE或使用maven命令运行:

      3.   

        mvn exec:java -Dexec.mainClass =“className”

        这不需要spark-submit。只需记住在运行

        之前打包文件

        如果您不想硬编码jar路径,可以执行以下操作:

        1. 在配置中,写:
        2.   

          SparkConf conf = new SparkConf()                               .setAppName( “APPNAME”)                               .setMaster( “火花://机器:7077”)                               .setJars(JavaSparkContext.jarOfClass(this.getClass()));

          1. 创建胖jar(如上所示)并在运行package命令后使用maven运行:
          2.   

            java -jar target / application-1.0-SNAPSHOT-driver.jar

            这将从加载类的jar中获取jar。

答案 2 :(得分:0)

我遇到了相同的错误消息,在我的情况下,我的 rdd 是空的,并且尝试针对它执行聚合任务。

在此列出此案例以方便其他遇到此错误消息的人: Job aborted due to stage failure: Task 9 in stage 24.0 failed 4 times

下面提供的链接中的建议有所帮助。 “.. rdd 变空了。空指针异常表示尝试针对空值执行聚合任务。检查您的数据是否为空,其中不应该存在空值,尤其是在聚合主题的那些列上” https://community.cloudera.com/t5/Support-Questions/PySpark-failuer-spark-SparkException-Job-aborted-due-to/td-p/171147