使用statsmodels进行时间序列分析

时间:2015-03-02 03:03:30

标签: python statsmodels

我尝试使用时间序列数据进行多次回归,但是当我将时间序列列添加到我的模型时,它最终将每个唯一值视为一个单独的变量,就像这样(我的' date'列的类型为datetime):

est = smf.ols(formula='r ~ spend + date', data=df).fit()
print est.summary()

coef    std err t   P>|t|   [95.0% Conf. Int.]
Intercept   -6.249e-10  inf -0  nan nan nan
date[T.Timestamp('2014-10-08 00:00:00')]    -2.571e-10  inf -0  nan nan nan
date[T.Timestamp('2014-10-15 00:00:00')]    9.441e-11   inf 0   nan nan nan
date[T.Timestamp('2014-10-22 00:00:00')]    5.619e-11   inf 0   nan nan nan
date[T.Timestamp('2014-10-29 00:00:00')]    -8.035e-12  inf -0  nan nan nan
date[T.Timestamp('2014-11-05 00:00:00')]    6.334e-11   inf 0   nan nan nan
date[T.Timestamp('2014-11-12 00:00:00')]    7.9e+04 inf 0   nan nan nan
date[T.Timestamp('2014-11-19 00:00:00')]    1.58e+05    inf 0   nan nan nan
date[T.Timestamp('2014-11-26 00:00:00')]    1.58e+05    inf 0   nan nan nan
date[T.Timestamp('2014-12-03 00:00:00')]    1.58e+05    inf 0   nan nan nan
date[T.Timestamp('2014-12-10 00:00:00')]    2.28e+05    inf 0   nan nan nan
date[T.Timestamp('2014-12-17 00:00:00')]    3.28e+05    inf 0   nan nan nan
date[T.Timestamp('2014-12-24 00:00:00')]    3.705e+05   inf 0   nan nan nan
spend   2.105e-10   inf 0   nan nan nan

我也尝试过statsmodel的tms包,但不知道如何处理频率':

ar_model = sm.tsa.AR(df, freq='1')

ValueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).

2 个答案:

答案 0 :(得分:2)

我真的很想看到数据样本和代码片段来重现您的错误。 没有它,我的建议不会解决您的特定错误消息。但是,它允许您对存储在pandas数据帧中的一组时间序列运行多元回归分析。假设您在时间序列中使用连续值而非分类值,以下是使用pandas和statsmodel进行此操作的方法:

具有随机值的数据框:

# Imports
import pandas as pd
import numpy as np
import itertools


np.random.seed(1)
rows = 12
listVars= ['y','x1', 'x2', 'x3']
rng = pd.date_range('1/1/2017', periods=rows, freq='D')
df_1 = pd.DataFrame(np.random.randint(100,150,size=(rows, len(listVars))), columns=listVars) 
df_1 = df_1.set_index(rng)

print(df_1)

输出 - 一些可用的数据:

              y   x1   x2   x3
2017-01-01  137  143  112  108
2017-01-02  109  111  105  115
2017-01-03  100  116  101  112
2017-01-04  107  145  106  125
2017-01-05  120  137  118  120
2017-01-06  111  142  128  129
2017-01-07  114  104  123  123
2017-01-08  141  149  130  132
2017-01-09  122  113  141  109
2017-01-10  107  122  101  100
2017-01-11  117  108  124  113
2017-01-12  147  142  108  130

以下函数可让您指定源数据帧以及因变量 y 以及一系列独立变量 x1,x2 。使用statsmodels,一些期望的结果将存储在数据帧中。在那里,R2将是数字类型,而回归系数和p值将是列表,因为这些估计的数量将随着您希望包含在分析中的独立变量的数量而变化。

def LinReg(df, y, x, const):

    betas = x.copy()

    # Model with out without a constant
    if const == True:
        x = sm.add_constant(df[x])
        model = sm.OLS(df[y], x).fit()
    else:
        model = sm.OLS(df[y], df[x]).fit()

    # Estimates of R2 and p
    res1 = {'Y': [y],
            'R2': [format(model.rsquared, '.4f')],
            'p': [model.pvalues.tolist()],
            'start': [df.index[0]], 
            'stop': [df.index[-1]],
            'obs' : [df.shape[0]],
            'X': [betas]}
    df_res1 = pd.DataFrame(data = res1)

    # Regression Coefficients
    theParams = model.params[0:]
    coefs = theParams.to_frame()
    df_coefs = pd.DataFrame(coefs.T)
    xNames = list(df_coefs)
    xValues = list(df_coefs.loc[0].values)
    xValues2 = [ '%.2f' % elem for elem in xValues ]
    res2 = {'Independent': [xNames],
            'beta': [xValues2]}
    df_res2 = pd.DataFrame(data = res2)

    # All results
    df_res = pd.concat([df_res1, df_res2], axis = 1)
    df_res = df_res.T
    df_res.columns = ['results']
    return(df_res)

这是一次试运行:

df_regression = LinReg(df = df, y = 'y', x = ['x1', 'x2'], const = True)
print(df_regression)

输出:

                                                            results
R2                                                       0.3650
X                                                      [x1, x2]
Y                                                             y
obs                                                          12
p             [0.7417691742514285, 0.07989515781898897, 0.25...
start                                       2017-01-01 00:00:00
stop                                        2017-01-12 00:00:00
Independent                                     [const, x1, x2]
coefficients                                [16.29, 0.47, 0.37]

这里有一个简单的复制粘贴的全部内容:

# Imports
import pandas as pd
import numpy as np
import statsmodels.api as sm

np.random.seed(1)
rows = 12
listVars= ['y','x1', 'x2', 'x3']
rng = pd.date_range('1/1/2017', periods=rows, freq='D')
df = pd.DataFrame(np.random.randint(100,150,size=(rows, len(listVars))), columns=listVars) 
df = df.set_index(rng)

def LinReg(df, y, x, const):

    betas = x.copy()

    # Model with out without a constant
    if const == True:
        x = sm.add_constant(df[x])
        model = sm.OLS(df[y], x).fit()
    else:
        model = sm.OLS(df[y], df[x]).fit()

    # Estimates of R2 and p
    res1 = {'Y': [y],
            'R2': [format(model.rsquared, '.4f')],
            'p': [model.pvalues.tolist()],
            'start': [df.index[0]], 
            'stop': [df.index[-1]],
            'obs' : [df.shape[0]],
            'X': [betas]}
    df_res1 = pd.DataFrame(data = res1)

    # Regression Coefficients
    theParams = model.params[0:]
    coefs = theParams.to_frame()
    df_coefs = pd.DataFrame(coefs.T)
    xNames = list(df_coefs)
    xValues = list(df_coefs.loc[0].values)
    xValues2 = [ '%.2f' % elem for elem in xValues ]
    res2 = {'Independent': [xNames],
            'beta': [xValues2]}
    df_res2 = pd.DataFrame(data = res2)

    # All results
    df_res = pd.concat([df_res1, df_res2], axis = 1)
    df_res = df_res.T
    df_res.columns = ['results']
    return(df_res)

df_regression = LinReg(df = df, y = 'y', x = ['x1', 'x2'], const = True)

print(df_regression)

答案 1 :(得分:0)

您为每个日期拟合线性模型,因为ols将日期视为分类变量。我建议你试试:

est = smf.ols(formula='r ~ spend', data=df).fit()
print est.summary()

对于statsmodel尝试:

ar_model = sm.tsa.AR(df['spend'], freq='1')