geom_vline(ggplot)中没有线型并自定义图例

时间:2015-02-27 10:22:14

标签: r ggplot2 legend

geom_vline我遇到了一个奇怪的问题。我似乎无法改变linetype。这里有数据:

dput(gf)
structure(list(variable = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L), .Label = c("As", "Cd_totale", "Cr_totale"), class = "factor"), 
    Area = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 1L, 6L, 6L, 6L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 6L, 1L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 4L, 4L, 5L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 6L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    3L, 3L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 
    3L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 4L, 4L, 4L, 4L, 1L, 1L, 
    1L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 1L, 1L, 6L, 6L, 1L, 
    6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 6L, 6L, 6L, 6L, 1L, 1L, 6L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 6L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    4L, 1L, 1L, 1L, 1L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 4L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 1L, 1L, 1L, 4L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("candiano", 
    "Lido_Spina", "Porto_Corsini", "Punta_Marina", "Sito1", "Sito2"
    ), class = "factor"), Campione = structure(c(40L, 39L, 38L, 
    155L, 37L, 36L, 153L, 50L, 51L, 156L, 34L, 152L, 73L, 154L, 
    75L, 76L, 157L, 41L, 42L, 43L, 44L, 45L, 35L, 47L, 48L, 49L, 
    6L, 7L, 13L, 21L, 162L, 164L, 166L, 2L, 8L, 46L, 14L, 165L, 
    167L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 12L, 33L, 
    150L, 151L, 111L, 74L, 3L, 9L, 15L, 18L, 4L, 10L, 158L, 159L, 
    160L, 161L, 17L, 20L, 1L, 126L, 127L, 128L, 52L, 53L, 54L, 
    55L, 56L, 57L, 58L, 22L, 163L, 139L, 140L, 141L, 142L, 143L, 
    144L, 145L, 146L, 147L, 32L, 149L, 109L, 110L, 72L, 84L, 
    112L, 113L, 114L, 115L, 116L, 77L, 16L, 19L, 5L, 11L, 82L, 
    83L, 61L, 85L, 86L, 87L, 129L, 130L, 131L, 132L, 133L, 134L, 
    135L, 59L, 60L, 123L, 62L, 62L, 63L, 64L, 65L, 66L, 67L, 
    68L, 148L, 108L, 70L, 71L, 137L, 124L, 125L, 98L, 99L, 88L, 
    89L, 117L, 78L, 79L, 80L, 81L, 122L, 91L, 138L, 97L, 90L, 
    136L, 100L, 101L, 94L, 102L, 92L, 93L, 96L, 69L, 103L, 95L, 
    105L, 119L, 107L, 104L, 118L, 120L, 121L, 106L, 106L, 109L, 
    105L, 110L, 108L, 121L, 122L, 102L, 111L, 107L, 146L, 147L, 
    104L, 149L, 150L, 112L, 148L, 103L, 145L, 120L, 117L, 4L, 
    10L, 123L, 18L, 125L, 126L, 127L, 124L, 129L, 118L, 119L, 
    91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 128L, 101L, 
    60L, 61L, 62L, 23L, 24L, 25L, 26L, 27L, 28L, 151L, 113L, 
    114L, 115L, 116L, 3L, 9L, 15L, 78L, 79L, 80L, 81L, 82L, 83L, 
    84L, 85L, 86L, 87L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 
    137L, 138L, 139L, 140L, 100L, 59L, 142L, 143L, 144L, 165L, 
    62L, 63L, 64L, 65L, 66L, 67L, 152L, 153L, 154L, 155L, 156L, 
    157L, 158L, 159L, 160L, 161L, 40L, 16L, 19L, 5L, 11L, 17L, 
    20L, 88L, 89L, 90L, 13L, 21L, 162L, 164L, 166L, 2L, 8L, 12L, 
    14L, 141L, 58L, 22L, 163L, 74L, 167L, 76L, 77L, 39L, 41L, 
    42L, 68L, 69L, 70L, 71L, 72L, 73L, 7L, 75L, 49L, 50L, 51L, 
    52L, 53L, 43L, 44L, 45L, 46L, 1L, 6L, 34L, 48L, 36L, 37L, 
    38L, 56L, 57L, 54L, 55L, 29L, 35L, 32L, 33L, 30L, 31L, 47L, 
    66L, 64L, 62L, 67L, 103L, 65L, 101L, 63L, 58L, 59L, 60L, 
    102L, 62L, 99L, 100L, 77L, 37L, 38L, 39L, 40L, 41L, 42L, 
    43L, 44L, 61L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 
    57L, 12L, 14L, 22L, 163L, 137L, 138L, 165L, 167L, 23L, 24L, 
    25L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 36L, 3L, 
    9L, 15L, 78L, 79L, 80L, 81L, 82L, 45L, 46L, 47L, 86L, 87L, 
    88L, 89L, 90L, 91L, 92L, 93L, 94L, 8L, 135L, 136L, 97L, 98L, 
    34L, 139L, 140L, 141L, 142L, 26L, 27L, 28L, 29L, 30L, 31L, 
    32L, 33L, 17L, 35L, 154L, 155L, 156L, 18L, 4L, 10L, 16L, 
    19L, 83L, 84L, 85L, 110L, 20L, 1L, 6L, 7L, 13L, 21L, 162L, 
    164L, 166L, 95L, 96L, 109L, 11L, 111L, 112L, 113L, 114L, 
    115L, 143L, 104L, 105L, 106L, 107L, 108L, 5L, 149L, 123L, 
    124L, 125L, 126L, 127L, 157L, 158L, 159L, 160L, 161L, 121L, 
    134L, 153L, 150L, 151L, 152L, 130L, 131L, 128L, 129L, 148L, 
    144L, 132L, 2L, 116L, 133L, 122L, 146L, 147L, 120L, 145L, 
    118L, 119L, 117L), .Label = c("A_1", "A_2", "A_LS", "A_PC", 
    "A_PM", "B_1", "B1_1", "B1_2", "B1_LS", "B1_PC", "B1_PM", 
    "B_2", "B2_1", "B2_2", "B2_LS", "B2_PC", "B2_PM", "B_LS", 
    "B_PC", "B_PM", "C_1", "C_2", "C386", "C387", "C388", "C389", 
    "C390", "C391", "C392", "C393", "C394", "C395", "C396", "C397", 
    "C398", "C399", "C400", "C401", "C402", "C403", "C404", "C405", 
    "C406", "C407", "C408", "C409", "C410", "C411", "C412", "C413", 
    "C414", "C415", "C416", "C417", "C418", "C419", "C420", "C421", 
    "C422", "C423", "C424", "C425", "C426", "C427", "C428", "C429", 
    "C430", "C431", "C432", "C433", "C434", "C435", "C436", "C437", 
    "C438", "C439", "C440", "C441", "C442", "C443", "C444", "C445", 
    "C446", "C447", "C448", "C449", "C450", "C451", "C452", "C453", 
    "C454", "C455", "C456", "C457", "C458", "C459", "C460", "C461", 
    "C462", "C463", "C464", "C465", "C466", "C467", "C468", "C469", 
    "C470", "C471", "C472", "C473", "C474", "C475", "C476", "C477", 
    "C478", "C479", "C480", "C481", "C482", "C483", "C484", "C485", 
    "C486", "C487", "C488", "C489", "C490", "C491", "C492", "C493", 
    "C494", "C495", "C496", "C497", "C498", "C499", "C500", "C501", 
    "C502", "C503", "C504", "C505", "C506", "C507", "C508", "C509", 
    "C510", "C511", "C512", "C513", "C514", "C515", "C516", "C517", 
    "C518", "C519", "C520", "C521", "C522", "C523", "C524", "D_1", 
    "D_2", "E_1", "E_2", "F_1", "F_2"), class = "factor"), zona = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
    1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 
    1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("campione", "controllo"
    ), class = "factor"), variable_value = c(7.75, 7.83, 8, 9, 
    7.2, 7.5, 6.5, 6.4, 6.2, 8, 7.75, 7.6, 8.5, 7, 8.25, 8.25, 
    9, 7, 7.5, 8.17, 8.75, 6.67, 7.6, 5.83, 6.75, 5.6, 9.48, 
    8.35, 8.37, 7.5, 5.5, 6.45, 6.22, 9.3, 8.62, 7, 6, 6.17, 
    5.71, 9, 8.75, 13.5, 7.75, 7.6, 8.33, 8, 8.75, 7.4, 8, 8.17, 
    6.17, 7, 8.5, 8, 8.45, 7.82, 6, 8.7, 10.1, 8.64, 9, 8, 6.6, 
    6.6, 7, 7.66, 9.19, 7.67, 10, 8, 6.2, 6.2, 6.25, 7, 6, 6, 
    6.4, 7, 7.75, 8, 7, 7, 9, 9, 7.8, 7, 6.17, 7, 8.25, 7, 8.6, 
    6.6, 8.25, 8, 8, 6.5, 6.75, 6.2, 6, 8.25, 6, 8.38, 9.16, 
    7.7, 8, 8, 5.6, 7.67, 7.67, 6.33, 9, 7.5, 7.33, 6.8, 7, 7, 
    8, 6, 5.8, 7, 6, 6, 5.8, 7.25, 8.8, 8.5, 8, 8.25, 7.75, 8.4, 
    8.5, 8.25, 7.25, 6, 7, 7, 7, 6.33, 7, 7, 8, 7.25, 6.67, 7.33, 
    5, 6, 7, 8, 7, 8, 8, 8, 8, 8, 7.67, 8, 8, 8.25, 7, 9.5, 8, 
    6, 8.2, 7, 6.5, 7, 6, 7.8, 0.12, 0.28, 0.12, 0.1, 0.24, 0.1, 
    0.1, 0.12, 0.15, 0.22, 0.13, 0.1, 0.11, 0.1, 0.12, 0.13, 
    0.13, 0.11, 0.1, 0.1, 0.1, 0.15, 0.14, 0.1, 0.15, 0.1, 0.1, 
    0.1, 0.1, 0.1, 0.1, 0.1, 0.07, 0.09, 0.1, 0.1, 0.09, 0.1, 
    0.11, 0.1, 0.08, 0.1, 0.1, 0.11, 0.1, 0.1, 0.15, 0.13, 0.15, 
    0.1, 0.16, 0.13, 0.12, 0.1, 0.1, 0.12, 0.1, 0.14, 0.14, 0.025, 
    0.12, 0.12, 0.11, 0.12, 0.13, 0.13, 0.11, 0.09, 0.1, 0.08, 
    0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.13, 0.1, 0.1, 0.1, 0.11, 
    0.09, 0.15, 0.1, 0.1, 0.1, 0.11, 0.09, 0.12, 0.12, 0.12, 
    0.12, 0.16, 0.1, 0.1, 0.1, 0.1, 0.2, 0.15, 0.1, 0.14, 0.12, 
    0.15, 0.025, 0.16, 0.18, 0.16, 0.025, 0.15, 0.08, 0.09, 0.1, 
    0.15, 0.17, 0.11, 0.05, 0.05, 0.12, 0.15, 0.12, 0.025, 0.1, 
    0.11, 0.17, 0.16, 0.12, 0.05, 0.12, 0.12, 0.13, 0.17, 0.13, 
    0.14, 0.12, 0.12, 0.11, 0.12, 0.13, 0.15, 0.12, 0.12, 0.1, 
    0.1, 0.12, 0.1, 0.13, 0.13, 0.18, 0.1, 0.14, 0.12, 0.1, 0.1, 
    0.18, 0.2, 0.15, 0.1, 0.11, 0.13, 0.11, 0.24, 0.16, 0.13, 
    0.15, 0.15, 0.22, 0.1, 85.75, 63.25, 43.6, 84.5, 84, 95.4, 
    98, 35.6, 79.6, 71.6, 73.2, 84, 54, 89, 99, 94.75, 70.6, 
    92.25, 84.83, 78.5, 70.17, 92.5, 94.67, 93.75, 75.2, 64.75, 
    66, 75.6, 82.4, 80.2, 78.8, 81, 79, 75.6, 79.2, 85.9, 57, 
    93.9, 97.9, 96.25, 84, 53.9, 56.1, 108.5, 111.75, 104.5, 
    78.25, 82.75, 87.25, 86.05, 85, 96, 102.25, 100.5, 100, 77, 
    84.3, 83.9, 52, 90.67, 85.75, 76.67, 86.33, 93.67, 70.5, 
    86.6, 77.67, 86.33, 74, 73.67, 86.67, 87.5, 72, 89.67, 93, 
    95, 93.5, 96, 88, 91, 86, 104.5, 90, 86.5, 85, 100.25, 81.25, 
    93.2, 109.75, 105, 104, 87.8, 99.75, 92.67, 47, 88.2, 73, 
    95, 94, 98.7, 100.4, 91.5, 63, 94.2, 89.33, 90.33, 83.67, 
    75.6, 86.8, 99.7, 90, 88.7, 88.4, 99.8, 76.4, 57.8, 52.5, 
    93, 91, 108, 91.5, 105, 98, 69.5, 79.75, 68.6, 103, 81, 90, 
    101.2, 102.6, 96.6, 100.8, 81, 90, 65, 79, 102.67, 102, 107, 
    107.5, 93, 70.2, 70.2, 67, 90.33, 71.5, 61.17, 64.6, 84.8, 
    87.5, 96.67, 76, 101, 100.75, 97.8, 77.4, 83.4, 79, 79, 55, 
    59.33, 98, 95.25, 82, 87, 70, 91), LCB_pelite = c(17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
    17, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 
    0.2, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
    50, 50, 50, 50, 50), LCB = c(25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
    25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
    0.35, 0.35, 0.35, 0.35, 0.35, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
    100, 100, 100, 100, 100, 100), LCL = c(32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 
    0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 
    360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360)), .Names = c("variable", 
"Area", "Campione", "zona", "variable_value", "LCB_pelite", "LCB", 
"LCL"), row.names = c(NA, -504L), class = "data.frame")

这里是代码:

require("reshape2")
require("ggplot2")
require("plyr")

gf<-rename(gf, c("value"="variable_value"))
gf_melt<-melt(gf, id=c("variable", "Area", "Campione", "zona", "variable_value"), variable.name="limite")

gf_melt<-rename(gf_melt, c("value"="valore_limite"))

ggplot(gf_melt)+
    stat_ecdf(aes(x=variable_value, color=zona))+
    facet_wrap(~variable, scales="free_x")+
    geom_vline(aes(xintercept=valore_limite, color=limite, linetype="dotted"))

结果如下: enter image description here

为什么linetype的{​​{1}}没有点缀?

最后一个问题。我可以将geom_vline的图例与geom_vline的图例分开,以便有2个图例:第一个带有 campione controllo ,第二个带有 LCB_pelite LCB LCL

1 个答案:

答案 0 :(得分:2)

以下内容应该可以解决您的问题!诀窍是将颜色和线型放在单独的括号中:

p1<-ggplot(gf_melt) + stat_ecdf(aes(x=variable_value, color=zona))
p1<-p1+facet_wrap(~variable, scales="free_x")
p1<-p1+geom_vline(aes(xintercept=valore_limite, color=limite), linetype="dotted")
p1

enter image description here