我正在使用pystruct
Python模块来对讨论话题中的帖子进行分类时出现结构化学习问题,而且在争取训练OneSlackSSVM
以便与{一起使用}时,我遇到了一个问题{1}}。我正在关注OCR example from the docs,但似乎无法在SSVM上调用LinearChainCRF
方法。这是我得到的错误:
.fit()
以下是我写的代码。我已经厌倦了在文档示例中构建数据,其中整体数据结构为Traceback (most recent call last):
File "<ipython-input-47-da804d135818>", line 1, in <module>
ssvm.fit(X_train, y_train)
File "/Users/kylefth/anaconda/lib/python2.7/site-
packages/pystruct/learners/one_slack_ssvm.py", line 429, in fit
joint_feature_gt = self.model.batch_joint_feature(X, Y)
File "/Users/kylefth/anaconda/lib/python2.7/site-
packages/pystruct/models/base.py", line 40, in batch_joint_feature
joint_feature_ += self.joint_feature(x, y)
File "/Users/kylefth/anaconda/lib/python2.7/site-
packages/pystruct/models/graph_crf.py", line 197, in joint_feature
unary_marginals[gx, y] = 1
IndexError: index 7 is out of bounds for axis 1 with size 7
,其中包含dict
,data
和labels
的键。
folds
在尝试拟合模型后,我得到了上述错误。 from pystruct.models import LinearChainCRF
from pystruct.learners import OneSlackSSVM
# Printing out keys of overall data structure
print threads.keys()
>>> ['folds', 'labels', 'data']
# Creating instances of models
crf = LinearChainCRF()
ssvm = OneSlackSSVM(model=crf)
# Splitting up data into training and test sets as in example
X, y, folds = threads['data'], threads['labels'], threads['folds']
X_train, X_test = X[folds == 1], X[folds != 1]
y_train, y_test = y[folds == 1], y[folds != 1]
# Print out dimensions of first element in data and labels
print X[0].shape, y[0].shape
>>> (8, 211), (8,)
# Fitting the ssvm model
ssvm.fit(X_train, y_train)
>>> see error above
,X_train
,X_test
和y_train
的所有实例都有211列,所有标签维度似乎都与其对应的培训和测试数据相匹配。任何帮助将不胜感激。
答案 0 :(得分:2)
我认为你所做的一切都是对的,这是https://github.com/pystruct/pystruct/issues/114。 您的标签需要从0开始到n_labels。我认为你从1开始。