我正在尝试复制使用lme4 glmer和Pandas的纯R代码的结果 - > R - > glmer。原始输出是
%load_ext rpy2.ipython
%R library(lme4)
%R data("respiratory", package = "HSAUR2")
%R write.csv(respiratory, 'respiratory2.csv')
%R resp <- subset(respiratory, month > "0")
%R resp$baseline <- rep(subset(respiratory, month == "0")$status,rep(4, 111))
%R resp_lmer <- glmer(status ~ baseline + month + treatment + gender + age + centre + (1 | subject),family = binomial(), data = resp)
%R -o resp_lmer_summary resp_lmer_summary = summary(resp_lmer)
%R -o exp_res exp_res = exp(fixef(resp_lmer))
print resp_lmer_summary
print exp_res
输出
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: status ~ baseline + month + treatment + gender + age + centre +
(1 | subject)
Data: resp
AIC BIC logLik deviance df.resid
446.6 487.6 -213.3 426.6 434
Scaled residuals:
Min 1Q Median 3Q Max
-2.5855 -0.3609 0.1430 0.3640 2.2119
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 3.779 1.944
Number of obs: 444, groups: subject, 111
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.65460 0.77621 -2.132 0.0330 *
baselinegood 3.08897 0.59859 5.160 2.46e-07 ***
month.L -0.20348 0.27957 -0.728 0.4667
month.Q -0.02821 0.27907 -0.101 0.9195
month.C -0.35571 0.28085 -1.267 0.2053
treatmenttreatment 2.16620 0.55157 3.927 8.59e-05 ***
gendermale 0.23836 0.66606 0.358 0.7204
age -0.02557 0.01994 -1.283 0.1997
centre2 1.03850 0.54182 1.917 0.0553 .
...
另一方面,当我通过Pandas读取文件时,通过rmagic将其传递给glmer,我得到了
import pandas as pd
df = pd.read_csv('respiratory2.csv',index_col=0)
baseline = df[df['month'] == 0][['subject','status']].set_index('subject')
df['status'] = (df['status'] == 'good').astype(int)
df['baseline'] = df.apply(lambda x: baseline.ix[x['subject']],axis=1)
df['centre'] = df['centre'].astype(str)
%R -i df
%R resp_lmer <- glmer(status ~ baseline + month + treatment + gender + age + centre + (1 | subject),family = binomial(), data = df)
%R -o res res = summary(resp_lmer)
%R -o exp_res exp_res = exp(fixef(resp_lmer))
print res
输出
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: status ~ baseline + month + treatment + gender + age + centre +
(1 | subject)
Data: df
AIC BIC logLik deviance df.resid
539.2 573.7 -261.6 523.2 547
Scaled residuals:
Min 1Q Median 3Q Max
-3.8025 -0.4123 0.1637 0.4295 2.4482
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 1.829 1.353
Number of obs: 555, groups: subject, 111
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.39252 0.60229 2.312 0.0208 *
baselinepoor -3.42262 0.46095 -7.425 1.13e-13 ***
month 0.12730 0.08465 1.504 0.1326
treatmenttreatment 1.59332 0.39981 3.985 6.74e-05 ***
gendermale 0.12915 0.49291 0.262 0.7933
age -0.01833 0.01480 -1.238 0.2157
centre2 0.70520 0.39676 1.777 0.0755 .
结果有些不同。当R读取文件本身时,它将月份变成称为“序数因子”的东西;而来自熊猫 - &gt; R这种类型被视为数值,也许这是区别?我相信我能够正确复制派生列基线,但我必须将状态转换为1/0数值,而纯R可以将此列用作字符串(好/差)。
注意:更正 - 我错过了Python部分中的过滤条件,其中只有月份> 0。一旦完成
df = df[df['month'] > 0]
然后治疗处理系数为2.16,接近纯R.R仍显示正基线好,而Pandas - > R显示具有负系数的baselinepoor,但我猜这是一个小的差异。