将OpenCV IplImage *数据转换为numpy数组

时间:2015-02-19 19:44:28

标签: python opencv numpy ctypes

我通过ctypes构建c ++ dll的python包装器。前面提到的库广泛使用OpenCV2.2(使用旧的C Api)。

我想将OpenCV的IplImage结构的char * imageData字段转换为numpy数组。我已经搜索了SO和网络几天,但似乎没有任何解决方案可以解决我的问题。

这就是问题所在。我用2张图片测试了我的实现:一张尺寸为600x599(并且一切都很好),另一张尺寸为602x600(这是问题所在)。两者都是彩色图像(3通道图像)。我用几张尺寸为602x600的图像测试了实现,并且总是让图像失真。

我猜测OpenCV添加到图像中的填充可能会有一些奇怪的事情(尽管我认为在我的实现中已经处理了它),但我无法完全理解它

事情是,第二张图像显示在"处理后#34;在c ++ dll中执行(暂时没有),我只能认为我做错了将IplImage数据(imageData)转换回numpy数组。

这是C ++源代码:

char* do_something(IplImage *img, int* image_size)
{
    // returning the image data
    return get_data_from_iplimage
    (
        img,        // doing zero processing for now
        image_size
    );
}

char* get_data_from_iplimage(IplImage* img, int* image_size)
{
    // getting the image total size
    *image_size = img->imageSize;

    // copying data
    char* image_data = new char[img->imageSize];
    memcpy(image_data, img->imageData, img->imageSize);

    // releasing the Iplimage*
    cvReleaseImage(&img);

    // returning the image data
    return image_data;
}

这是Python源代码:

# Image type (IplImage)
IPL_DEPTH_SIGN = 0x80000000

IPL_DEPTH_1U = 1
IPL_DEPTH_8U = 8
IPL_DEPTH_16U = 16
IPL_DEPTH_32F = 32
IPL_DEPTH_64F = 64

IPL_DEPTH_8S = IPL_DEPTH_SIGN + IPL_DEPTH_8U
IPL_DEPTH_16S = IPL_DEPTH_SIGN + IPL_DEPTH_16U
IPL_DEPTH_32S = IPL_DEPTH_SIGN + 32


def depth2dtype(depth):
    if depth is IPL_DEPTH_8U:
        return np.dtype('uint8')

    elif depth is IPL_DEPTH_8S:
        return np.dtype('int8')

    elif depth is IPL_DEPTH_16U:
        return np.dtype('uint16')

    elif depth is IPL_DEPTH_16S:
        return np.dtype('int16')

    elif depth is IPL_DEPTH_32S:
        return np.dtype('int32')

    elif depth is IPL_DEPTH_32F:
        return np.dtype('float32')

    elif depth is IPL_DEPTH_64F:
        return np.dtype('float64')

    else:
        # This is probably a good default
        return np.dtype('uint8')


def get_iplimage_ptr(img):
    # None is considered as the NULL pointer
    if img is None:
        return None     # the same thing as 'return img'

    # getting image dimensions and data
    height, width, n_channels = get_ndarray_dimensions(img)
    img_data = img.tostring()

    # creating the image header
    cv_img = cv2.cv.CreateImageHeader((width, height), cv2.cv.IPL_DEPTH_8U, n_channels)
    width_step = img.dtype.itemsize * n_channels * width  # creating the famous 'width_step' parameter
    cv2.cv.SetData(cv_img, None, width_step)

    # setting the data (img is a numpy array)
    ipl = iplimage_t.from_address(id(cv_img))
    ipl_img_ptr = ipl.ipl_ptr.contents
    ipl_img_ptr.imageData = img_data

    # returning the OpenCV2.2 compatible image (IplImage*)
    return ipl_img_ptr


def get_ndarray_dimensions(img):
    # getting image shape information
    img_shape = img.shape
    img_shape_length = len(img_shape)

    # validating parameters
    if img_shape_length <= 1 or img_shape_length > 3:
        raise ArgumentError('Invalid image information. We support images with 1, 2 or 3 channels only.')

    # getting the amount of channels
    nc = 1 if img_shape_length == 2 else img_shape[2]

    # building the processed image
    h, w = img_shape[0], img_shape[1]

    # returning the height, width and nChannels
    return h, w, nc

def build_ndarray_from_data(str_data, img_shape):
    # getting image dimensions
    height, width, n_channels = img_shape

    # getting the ndarray datatype
    dtype = depth2dtype(IPL_DEPTH_8U)

    # building a numpy ndarray from the string data
    ndarray = np.fromstring(str_data, dtype)

    # reshaping to 'height' rows
    # width_step = len(str_data) / height
    ndarray = ndarray.reshape(height, -1)

    # removing the padding added by opencv to each row
    cols = dtype.itemsize * width * n_channels
    ndarray = ndarray[:, :cols]

    # reshaping to the final ndarray dimensions
    ndarray = ndarray.reshape((height, width, n_channels))

    # returning the numpy array that represents the image
    return ndarray


# python wrapper function to the c++ function
def do_something(img):
    # getting the IplImage*
    iplimage_ptr = get_iplimage_ptr(img)

    # calling the c++ function
    image_size = c_int(0)
    byte_data = __c_do_something(iplimage_ptr, byref(image_size))
    str_data = string_at(byte_data, image_size.value)

    # getting the image dimensions
    img_shape = get_ndarray_dimensions(img)

    # building the processed image
    proc_img = build_ndarray_from_data(str_data, img_shape)

    # returning the processed image
    return proc_img


# does something ('pointer' to the c function)
__c_do_something = c_func(
    'do_something', _cdll, c_byte_p,
    ('img', POINTER(IplImage), 1),      # IplImage *img
    ('image_size', c_int_p, 1),         # int* image_size
)

我为源代码的长度道歉(尽管缺少一些定义),但我想&#34;显式优于隐式&#34;,jeje。

任何帮助都将不胜感激。

PD:如果它有助于我使用Python 2.7,Numpy 1.7.1,OpenCV2.2(预编译),Visual Studio 2013(Visual C ++)和Windows 8.1。

3 个答案:

答案 0 :(得分:1)

我可能错了,但是...对我来说,你可以将IPlImage转换为Mat,然后将其转换为python numpy数组。当然你也可以用另一种方式做到这一点 - numpy数组到Mat和Mat到IPlImage。 Here有一些代码适用于OpenCV 2.x(在Opencv 2.4.10上测试,但也适用于2.2)。如果它不适用于您的版本,它至少应该是一个很好的提示,并帮助您为您的版本编写boost python转换器。
如果 - 由于某种原因 - 您无法将IplImage转换为Mat,请告诉我们为什么我们可以尝试制定其他解决方案。

答案 1 :(得分:0)

经过几天坚持这个问题,我想我终于达成了解决方案。我决定用ctypes在Python中复制OpenCV IplImage结构,而不是传递imageData(char *)。然后,从收到的IplImage指针构建numpy数组。

顺便说一句,我还是不知道之前发生了什么,但我想在char * imageData转换为Python中的字符串时会发生一些疯狂的事情(0值转换为空字符 - 等等。)。

C ++片段现在有点简单,因为我不需要提取&#34;提取&#34;来自图像的imageData。在这里:

IplImage* do_something(IplImage *img)
{
    // doing nothing
    return img;
}

在Python方面,代码有点类似于旧代码。但是有一些关键方面:

  • 首先,&#39; cv.iplimage&#39;建成。
  • &#39; cv.iplimage&#39;然后转换为&#39; cv.cvmat&#39;。
  • 最后,&#c; cv.cvmat&#39;转换为numpy数组。

以下是代码:

# Image type (IplImage)
IPL_DEPTH_SIGN = 0x80000000

IPL_DEPTH_1U = 1
IPL_DEPTH_8U = 8
IPL_DEPTH_16U = 16
IPL_DEPTH_32F = 32
IPL_DEPTH_64F = 64

IPL_DEPTH_8S = IPL_DEPTH_SIGN + IPL_DEPTH_8U
IPL_DEPTH_16S = IPL_DEPTH_SIGN + IPL_DEPTH_16U
IPL_DEPTH_32S = IPL_DEPTH_SIGN + 32


# subclassing the ctypes.Structure class to add new features
class _Structure(Structure):
    def __repr__(self):
        """
        Print the fields
        """
        res = []

        for field in self._fields_:
            res.append('%s=%s' % (field[0], repr(getattr(self, field[0]))))

        return self.__class__.__name__ + '(' + ','.join(res) + ')'

class IplTileInfo(_Structure):
    _fields_ = []

class IplROI(_Structure):
    _fields_ = \
    [
        # 0 - no COI (all channels are selected)
        # 1 - 0th channel is selected ...
        ('coi', c_int),
        ('xOffset', c_int),
        ('yOffset', c_int),
        ('width', c_int),
        ('height', c_int),
    ]

# ipl image header
class IplImage(_Structure):
    def __repr__(self):
        """
        Print the fields
        """
        res = []

        for field in self._fields_:
            if field[0] in ['imageData', 'imageDataOrigin']:
                continue

            res.append('%s=%s' % (field[0], repr(getattr(self, field[0]))))

        return self.__class__.__name__ + '(' + ','.join(res) + ')'

IplImage._fields_ = [
    ("nSize", c_int),
    ("ID", c_int),
    ("nChannels", c_int),
    ("alphaChannel", c_int),
    ("depth", c_int),
    ("colorModel", c_char * 4),
    ("channelSeq", c_char * 4),
    ("dataOrder", c_int),
    ("origin", c_int),
    ("align", c_int),
    ("width", c_int),
    ("height", c_int),
    ("roi", POINTER(IplROI)),
    ("maskROI", POINTER(IplImage)),
    ("imageID", c_void_p),
    ("tileInfo", POINTER(IplTileInfo)),
    ("imageSize", c_int),
    ("imageData", c_byte_p),
    ("widthStep", c_int),
    ("BorderMode", c_int * 4),
    ("BorderConst", c_int * 4),
    ("imageDataOrigin", c_char_p)]


class iplimage_t(_Structure):
    _fields_ = \
    [
        ('ob_refcnt', c_ssize_t),
        ('ob_type',  py_object),
        ('ipl_ptr', POINTER(IplImage)),
        ('data', py_object),
        ('offset', c_size_t)
    ]

# gets the dimensions of a numpy ndarray
def get_ndarray_dimensions(img):
    # getting image shape information
    img_shape = img.shape
    img_shape_length = len(img_shape)

    # validating parameters
    if img_shape_length <= 1 or img_shape_length > 3:
        raise ArgumentError('Invalid image information. We support images with 1, 2 or 3 channels only.')

    # getting the amount of channels
    nc = 1 if img_shape_length == 2 else img_shape[2]

    # building the processed image
    h, w = img_shape[0], img_shape[1]

    # returning the height, width and nChannels
    return h, w, nc

def build_ndarray_from_data(iplimage_ptr, img_shape):
    # getting image dimensions
    height, width, n_channels = img_shape

    # getting the IplImage*
    iplimage = iplimage_ptr.contents

    # creating the image header
    cv_img = cv2.cv.CreateImageHeader((width, height), IPL_DEPTH_8U, n_channels)

    # getting the char* from byte data
    str_data = string_at(iplimage.imageData, iplimage.imageSize)

    # setting the image data
    cv2.cv.SetData(cv_img, str_data, iplimage.widthStep)

    # building a CvMat image
    cv_mat = cv_img[:, :]

    # building the ndarray from the CvMat image
    ndarray = np.asarray(cv_mat)

    # returing the built ndarray
    return ndarray

# python wrapper function to the c++ function
def do_something(img):
    # getting the IplImage*
    iplimage_ptr = get_iplimage_ptr(img)

    # calling the c++ function
    ipl_ptr = __c_do_something(iplimage_ptr)

    # getting the image dimensions
    img_shape = get_ndarray_dimensions(img)

    # building the processed image
    proc_img = build_ndarray_from_data(ipl_ptr, img_shape)

    # returning the processed image
    return proc_img

# does something ('pointer' to the c function)
__c_do_something = c_func(
    'do_something', _cdll, POINTER(IplImage),
    ('img', POINTER(IplImage), 1),      # IplImage *img
)

希望它有所帮助;)。

PS:我为代码的长度道歉,但我试图提供最接近的工作示例。使用ctypes加载已编译的C ++ .dll取决于您(:。

答案 2 :(得分:0)

你不需要Python IplImage,只需这样做

C档案:

void *return_frame;
extern "C" void* get_rgb_frame(){
        return return_frame;
}
#define FRAME_BUFSIZE (1920 * 1080 * 3 + 1)
return_frame = malloc(FRAME_BUFSIZE);
memset(return_frame, 0x00, FRAME_BUFSIZE + 1);
IplImage* pImg = cvLoadImage("test.jpg",-1);    
memcpy(return_frame, 1920 * 1080 * 3);       
cvReleaseImage(&pImg);

Python文件:

dll.get_rgb_frame.restype = c_void_p
yv12_img = dll.get_rgb_frame()
imagedata = string_at(yv12_img, 1920 * 1080 * 3)
cv_img = cv2.cv.CreateImageHeader((1920, 1080), cv2.cv.IPL_DEPTH_8U, 3)
cv2.cv.SetData(cv_img, imagedata, 3 * 1920)
cv_mat = cv_img[:]
array = np.asarray(cv_mat)
cv2.imshow('jinfeng', array)

你可以在Python中显示图像