我试图用微积分的基本定理来证明引理lm1:
lemma lm1:
fixes f :: "real ⇒ real"
assumes "∀x∈{a..b}. (f has_vector_derivative f' x) (at x within {a .. b})"
"∀x∈{a..b}. a ≤ x"
"∀x∈{a..b}. x ≤ b"
shows "∀x∈{a..b}. (f' has_integral (f x - f a)) {a .. x}"
这只是以下引理lm2的扩展,它证明了整个集合的集成。
lemma lm2:
fixes f :: "real ⇒ real"
assumes "∀x∈{a..b}. (f has_vector_derivative f' x) (at x within {a .. b})"
"a ≤ b"
shows "∀x∈{a..b}. (f' has_integral (f b - f a)) {a .. b}"
using assms
apply(simp add: fundamental_theorem_of_calculus)
相反,我想证明集合对于集合中的任何值都是正确的,而不仅仅是下限和上限。我怎么能表明这个?
答案 0 :(得分:1)
首先,lm1中的第二个和第三个假设是微不足道的:
lemma "∀x∈{a..b}. a ≤ x ⟷ True" by simp
lemma "∀x∈{a..b}. x ≤ b ⟷ True" by simp
因此,您最好假设" a< = b"。要对集合中的任何值应用基线_theorem_of_calculus",您还需要变量边界的导数,
∀x∈{a..b}. ∀y∈{a..x}. (f has_vector_derivative f' y) (at y within {a..x})
您可以在证明中使用has_vector_derivative_within_subset:
lemma lm1':
fixes f :: "real ⇒ real"
assumes "∀x∈{a..b}. (f has_vector_derivative f' x) (at x within {a .. b})"
assumes "a ≤ b"
shows "∀x∈{a..b}. (f' has_integral (f x - f a)) {a .. x}"
using assms
apply safe
apply (rule fundamental_theorem_of_calculus)
apply simp
apply safe
apply (rule has_vector_derivative_within_subset[where s="{a .. b}"])
apply simp
apply simp
done
或更紧凑:
using assms
by (auto intro!: fundamental_theorem_of_calculus
intro: has_vector_derivative_within_subset[where s="{a .. b}"])