我在2004-07-09到2014-12-31之间的10年期间每日销售额中有两个可变数据框(df)。并非每个日期都在十年期间出现,但在周一至周五的大多数日子都是如此。
我的目标是按季度汇总销售额,转换为时间序列对象,并运行季节性分解和其他时间序列预测。
我在转换时遇到问题,因为我收到错误:
time series has no or less than 2 periods
这是我的代码结构。
# create a time series object
library(xts)
x <- xts(df$amount, df$date)
# create a time series object aggregated by quarter
q.x <- apply.quarterly(x, sum)
当我尝试运行时
fit <- stl(q.x, s.window = "periodic")
我收到错误消息
series is not periodic or has less than two periods
当我尝试运行时
q.x.components <- decompose(q.x)
# or
decompose(x)
我收到错误消息
time series has no or less than 2 periods
那么,如何使用原始数据框,使用日期变量和金额变量(销售额),将该季度汇总为时间序列对象,然后运行时间序列分析?
答案 0 :(得分:0)
我想我能够回答我自己的问题。我这样做了任何人都可以确认这种结构是否有意义?
library(lubridate)
# add a new variable indicating the calendar year.quarter (i.e. 2004.3) of each observation
df$year.quarter <- quarter(df$date, with_year = TRUE)
library(plyr)
# summarize gift amount by year.quarter
new.data <- ddply(df, .(year.quarter), summarize,
sum = round(sum(amount), 2))
# convert the new data to a quarterly time series object beginning
# in July 2004 (2004, Q3) and ending in December 2014 (2014, Q4)
nd.ts <- ts(new.data$sum, start = c(2004,3), end = c(2014,4), frequency = 4)