我有一个程序接受输入查询并根据其TFIDF分数对类似文档进行排名。问题是,我想添加一些关键字并将它们视为"输入"同样。每个查询的关键字都不同。
例如,如果查询为"Logic Based Knowledge Representation"
,则单词如下:
Level 0 keywords: [logic, base, knowledg, represent]
Level 1 keywords: [tempor, modal, logic, resolut, method, decis, problem,
reason, revis, hybrid, represent]
Level 2 keywords: [classif, queri, process, techniqu, candid, semant, data,
model, knowledg, base, commun, softwar, engin, subsumpt,
kl, undecid, classic, structur, object, field]
我想以不同的方式对待得分,例如,对于文档中与第0级中的单词相等的术语,我想将得分乘以1.对于文档中与术语1中的单词相等的术语,乘以得分为0.8。最后,对于文档中的术语,等于2级中的单词,将得分乘以0.64。
我的目的是扩展输入查询,同时确保包含0级以上关键字的文档更重要,包含1级和2级关键字的文档更少(即使输入已扩展)。 我没有把它包含在我的程序中。到目前为止,我的程序只计算查询中所有文档的TFIDF分数,并对结果进行排名:
public class Ranking{
private static int maxHits = 2000000;
public static void main(String[] args) throws Exception {
System.out.println("Enter your paper title: ");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String paperTitle = null;
paperTitle = br.readLine();
// CitedKeywords ckeywords = new CitedKeywords();
// ckeywords.readDataBase(paperTitle);
String querystr = args.length > 0 ? args[0] :paperTitle;
StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_42);
Query q = new QueryParser(Version.LUCENE_42, "title", analyzer)
.parse(querystr);
IndexReader reader = DirectoryReader.open(
FSDirectory.open(
new File("E:/Lucene/new_bigdataset_index")));
IndexSearcher searcher = new IndexSearcher(reader);
VSMSimilarity vsmSimiliarty = new VSMSimilarity();
searcher.setSimilarity(vsmSimiliarty);
TopDocs hits = searcher.search(q, maxHits);
ScoreDoc[] scoreDocs = hits.scoreDocs;
PrintWriter writer = new PrintWriter("E:/Lucene/result/1.txt", "UTF-8");
int counter = 0;
for (int n = 0; n < scoreDocs.length; ++n) {
ScoreDoc sd = scoreDocs[n];
float score = sd.score;
int docId = sd.doc;
Document d = searcher.doc(docId);
String fileName = d.get("title");
String year = d.get("pub_year");
String paperkey = d.get("paperkey");
System.out.printf("%s,%s,%s,%4.3f\n", paperkey, fileName, year, score);
writer.printf("%s,%s,%s,%4.3f\n", paperkey, fileName, year, score);
++counter;
}
writer.close();
}
}
-
import org.apache.lucene.index.FieldInvertState;
import org.apache.lucene.search.similarities.DefaultSimilarity;
public class VSMSimilarity extends DefaultSimilarity{
// Weighting codes
public boolean doBasic = true; // Basic tf-idf
public boolean doSublinear = false; // Sublinear tf-idf
public boolean doBoolean = false; // Boolean
//Scoring codes
public boolean doCosine = true;
public boolean doOverlap = false;
private static final long serialVersionUID = 4697609598242172599L;
// term frequency in document =
// measure of how often a term appears in the document
public float tf(int freq) {
// Sublinear tf weighting. Equation taken from [1], pg 127, eq 6.13.
if (doSublinear){
if (freq > 0){
return 1 + (float)Math.log(freq);
} else {
return 0;
}
} else if (doBoolean){
return 1;
}
// else: doBasic
// The default behaviour of Lucene is sqrt(freq),
// but we are implementing the basic VSM model
return freq;
}
// inverse document frequency =
// measure of how often the term appears across the index
public float idf(int docFreq, int numDocs) {
if (doBoolean || doOverlap){
return 1;
}
// The default behaviour of Lucene is
// 1 + log (numDocs/(docFreq+1)),
// which is what we want (default VSM model)
return super.idf(docFreq, numDocs);
}
// normalization factor so that queries can be compared
public float queryNorm(float sumOfSquaredWeights){
if (doOverlap){
return 1;
} else if (doCosine){
return super.queryNorm(sumOfSquaredWeights);
}
// else: can't get here
return super.queryNorm(sumOfSquaredWeights);
}
// number of terms in the query that were found in the document
public float coord(int overlap, int maxOverlap) {
if (doOverlap){
return 1;
} else if (doCosine){
return 1;
}
// else: can't get here
return super.coord(overlap, maxOverlap);
}
// Note: this happens an index time, which we don't take advantage of
// (too many indices!)
public float computeNorm(String fieldName, FieldInvertState state){
if (doOverlap){
return 1;
} else if (doCosine){
return super.computeNorm(state);
}
// else: can't get here
return super.computeNorm(state);
}
}
以下是我当前节目的示例输出(没有提升分数):
3086,Logic Based Knowledge Representation.,1999,5.165
33586,A Logic for the Representation of Spatial Knowledge.,1991,4.663
328937,Logic Programming for Knowledge Representation.,2007,4.663
219720,Logic for Knowledge Representation.,1984,4.663
487587,Knowledge Representation with Logic Programs.,1997,4.663
806195,Logic Programming as a Representation of Knowledge.,1983,4.663
806833,The Role of Logic in Knowledge Representation.,1983,4.663
744914,Knowledge Representation and Logic Programming.,2002,4.663
1113802,Knowledge Representation in Fuzzy Logic.,1989,4.663
984276,Logic Programming and Knowledge Representation.,1994,4.663
任何人都可以让我知道如何为我上面提到的条件添加分数? Lucene是否提供这种功能?我可以将它集成到VSMSimilarity类吗?
修改: 我在Lucene文档中找到了这个:
public void setBoost(float b)
将此查询子句的提升设置为b。符合此条款的文件(除正常权重外)的分数乘以b。
很遗憾,这似乎会增加文档级别的分数。我想将得分乘以一个学期水平,但我还没有找到实现这个目标的方法。因此,如果文档包含来自level0和level1的单词,则只有level1中的术语将乘以0.8,例如
答案 0 :(得分:1)
你可以使用Lucene术语提升。
增加您的查询(假设OR是默认运算符)
logic base knowledge representation temporal^0.8 modal^0.8 classification^0.64...
使用标准的模拟提供者之一。
PS:在您的示例中找到LUCENE_42
。这个功能几乎存在于任何版本的Lucene中(我记得它在2.4.9中)。