我实施了一个程序,根据用户输入的TFIDF相似度得分对文档进行排名。
以下是该计划:
public class Ranking{
private static int maxHits = 10;
private static Connection connect = null;
private static PreparedStatement preparedStatement = null;
private static ResultSet resultSet = null;
public static void main(String[] args) throws Exception {
System.out.println("Enter your paper title: ");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String paperTitle = null;
paperTitle = br.readLine();
Class.forName("com.mysql.jdbc.Driver");
connect = DriverManager.getConnection("jdbc:mysql://localhost/arnetminer?"
+ "user=root&password=1234");
preparedStatement = connect.prepareStatement
("SELECT stoppedstemmedtitle from arnetminer.new_bigdataset "
+ "where title="+"'"+paperTitle+"';");
resultSet = preparedStatement.executeQuery();
resultSet.next();
String stoppedstemmedtitle = resultSet.getString(1);
String querystr = args.length > 0 ? args[0] :stoppedstemmedtitle;
StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_42);
Query q = new QueryParser(Version.LUCENE_42, "stoppedstemmedtitle", analyzer).parse(querystr);
IndexReader reader = DirectoryReader.open(FSDirectory.open(new File("E:/Lucene/new_bigdataset_index")));
IndexSearcher searcher = new IndexSearcher(reader);
VSMSimilarity vsmSimiliarty = new VSMSimilarity();
searcher.setSimilarity(vsmSimiliarty);
TopDocs hits = searcher.search(q, maxHits);
ScoreDoc[] scoreDocs = hits.scoreDocs;
PrintWriter writer = new PrintWriter("E:/Lucene/result/1.txt", "UTF-8");
int counter = 0;
for (int n = 0; n < scoreDocs.length; ++n) {
ScoreDoc sd = scoreDocs[n];
System.out.println(scoreDocs[n]);
float score = sd.score;
int docId = sd.doc;
Document d = searcher.doc(docId);
String fileName = d.get("title");
String year = d.get("pub_year");
String paperkey = d.get("paperkey");
System.out.printf("%s,%s,%s,%4.3f\n", paperkey, fileName, year, score);
writer.printf("%s,%s,%s,%4.3f\n", paperkey, fileName, year, score);
++counter;
}
writer.close();
}
}
和
public class VSMSimilarity extends DefaultSimilarity{
// Weighting codes
public boolean doBasic = true; // Basic tf-idf
public boolean doSublinear = false; // Sublinear tf-idf
public boolean doBoolean = false; // Boolean
//Scoring codes
public boolean doCosine = true;
public boolean doOverlap = false;
// term frequency in document = measure of how often a term appears in the document
public float tf(int freq) {
return super.tf(freq);
}
// inverse document frequency = measure of how often the term appears across the index
public float idf(int docFreq, int numDocs) {
// The default behaviour of Lucene is 1 + log (numDocs/(docFreq+1)), which is what we want (default VSM model)
return super.idf(docFreq, numDocs);
}
// normalization factor so that queries can be compared
public float queryNorm(float sumOfSquaredWeights){
return super.queryNorm(sumOfSquaredWeights);
}
// number of terms in the query that were found in the document
public float coord(int overlap, int maxOverlap) {
// else: can't get here
return super.coord(overlap, maxOverlap);
}
// Note: this happens an index time, which we don't take advantage of (too many indices!)
public float computeNorm(String fieldName, FieldInvertState state){
// else: can't get here
return super.computeNorm(state);
}
}
但是,对于与输入具有100%相似性的精确文档,它不会返回值1。
如果我按如下方式输入用户输入:Logic Based Knowledge Representation
我得到的输出和TFIDF得分是(对于与输入具有100%相似性的文档,为5.165):
3086,Logic Based Knowledge Representation.,1999,5.165
33586,A Logic for the Representation of Spatial Knowledge.,1991,4.663
328937,Logic Programming for Knowledge Representation.,2007,4.663
219720,Logic for Knowledge Representation.,1984,4.663
487587,Knowledge Representation with Logic Programs.,1997,4.663
806195,Logic Programming as a Representation of Knowledge.,1983,4.663
806833,The Role of Logic in Knowledge Representation.,1983,4.663
744914,Knowledge Representation and Logic Programming.,2002,4.663
1113802,Knowledge Representation in Fuzzy Logic.,1989,4.663
984276,Logic Programming and Knowledge Representation.,1994,4.663
这是正常的事情还是我的tfidf实施有问题?
非常感谢!
答案 0 :(得分:1)
首先 - Lucene已经具有TF-IDF相似性 - org.apache.lucene.search.similarities.TFIDFSimilarity
第二个 -
tf-idf,术语频率 - 逆文档频率的缩写,是a 数值统计,旨在反映字的重要性 是集合或语料库中的文档
我已经标记了单词,所以这个tf-idf的东西只适用于一个单词查询,但是当查询有多个单词时,tf-idf会像这样完成:
最简单的排名函数之一是通过求和来计算的 每个查询字词的tf-idf
所以,这就是为什么tf-idf可以为你提供超过1分的原因