我正在尝试根据场景中找到的基准标记确定相机姿势。
基准:http://tinypic.com/view.php?pic=4r6k3q&s=8#.VNLnWTVVK1E
当前流程:
现在我想弄清楚相机的姿势。 我试图使用:
void solvePnP(const Mat& objectPoints,const Mat& imagePoints,const Mat& cameraMatrix,const Mat& distCoeffs, 垫&安培; rvec,Mat& tvec,bool useExtrinsicGuess = false)
其中:
然而,当我运行它时,我收到核心转储错误,所以我不确定我做错了什么。
我还没有找到关于solvePNP()的非常好的文档 - 我是否误解了函数或输入参数?
感谢您的帮助
更新 这是我的过程:
OrbFeatureDetector detector; //Orb seems more accurate than SIFT
vector<KeyPoint> keypoints1, keypoints2;
detector.detect(marker_im, keypoints1);
detector.detect(scene_im, keypoints2);
Mat display_marker_im, display_scene_im;
drawKeypoints(marker_im, keypoints1, display_marker_im, Scalar(0,0,255));
drawKeypoints(scene_im, keypoints2, display_scene_im, Scalar(0,0,255));
SiftDescriptorExtractor extractor;
Mat descriptors1, descriptors2;
extractor.compute( marker_im, keypoints1, descriptors1 );
extractor.compute( scene_im, keypoints2, descriptors2 );
BFMatcher matcher; //BF seems to match better than FLANN
vector< DMatch > matches;
matcher.match( descriptors1, descriptors2, matches );
Mat img_matches;
drawMatches( marker_im, keypoints1, scene_im, keypoints2,
matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
vector<Point2f> obj, scene;
for (int i = 0; i < matches.size(); i++) {
obj.push_back(keypoints1[matches[i].queryIdx].pt);
scene.push_back(keypoints2[matches[i].trainIdx].pt);
}
Mat H;
H = findHomography(obj, scene, CV_RANSAC);
//Get corners of fiducial
vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint(marker_im.cols, 0);
obj_corners[2] = cvPoint(marker_im.cols, marker_im.rows);
obj_corners[3] = cvPoint(0, marker_im.rows);
vector<Point2f> scene_corners(4);
perspectiveTransform(obj_corners, scene_corners, H);
FileStorage fs2("cal.xml", FileStorage::READ);
Mat cameraMatrix, distCoeffs;
fs2["Camera_Matrix"] >> cameraMatrix;
fs2["Distortion_Coefficients"] >> distCoeffs;
Mat rvec, tvec;
//same points as object_corners, just adding z-axis (0)
vector<Point3f> objp(4);
objp[0] = cvPoint3D32f(0,0,0);
objp[1] = cvPoint3D32f(gray.cols, 0, 0);
objp[2] = cvPoint3D32f(gray.cols, gray.rows, 0);
objp[3] = cvPoint3D32f(0, gray.rows, 0);
solvePnPRansac(objp, scene_corners, cameraMatrix, distCoeffs, rvec, tvec );
Mat rotation, viewMatrix(4, 4, CV_64F);
Rodrigues(rvec, rotation);
for(int row=0; row<3; ++row)
{
for(int col=0; col<3; ++col)
{
viewMatrix.at<double>(row, col) = rotation.at<double>(row, col);
}
viewMatrix.at<double>(row, 3) = tvec.at<double>(row, 0);
}
viewMatrix.at<double>(3, 3) = 1.0f;
cout << "rotation: " << rotation << endl;
cout << "viewMatrix: " << viewMatrix << endl;
答案 0 :(得分:0)
好的,solvePnP()
为您提供从模型框架(即立方体)到相机框架(称为视图矩阵)的传递矩阵。
输入参数:
objectPoints
- 对象坐标空间中的对象点数组,3xN / Nx3 1通道或1xN / Nx1 3通道,其中N是点数。 std::vector<cv::Point3f>
也可以在这里传递。这些点是3D,但由于它们位于(基准标记的)模式坐标系中,因此钻机是平面的,因此每个输入物点的Z坐标为0,imagePoints
- 相应图像点阵列,2xN / Nx2 1通道或1xN / Nx1 2通道,其中N是点数。 std::vector<cv::Point2f>
也可以在这里传递,intrinsics
:相机矩阵(焦距,主要点),distortion
:失真系数,假设零失真系数为空,rvec
:输出旋转向量tvec
:输出翻译向量构建视图矩阵是这样的:
cv::Mat rvec, tvec;
cv::solvePnP(objectPoints, imagePoints, intrinsics, distortion, rvec, tvec);
cv::Mat rotation, viewMatrix(4, 4, CV_64F);
cv::Rodrigues(rvec, rotation);
for(int row=0; row<3; ++row)
{
for(int col=0; col<3; ++col)
{
viewMatrix.at<double>(row, col) = rotation.at<double>(row, col);
}
viewMatrix.at<double>(row, 3) = tvec.at<double>(row, 0);
}
viewMatrix.at<double>(3, 3) = 1.0f;
此外,您可以分享您的代码和错误消息吗?