我有这个data.frame:
df <- data.frame(
id = c("x1", "x2", "x3", "x4", "x5", "x1", "x2", "x6", "x7", "x8", "x7", "x8" ),
age = c(rep("juvenile", 5), rep("adult", 7))
)
df
id age
1 x1 juvenile
2 x2 juvenile
3 x3 juvenile
4 x4 juvenile
5 x5 juvenile
6 x1 adult
7 x2 adult
8 x6 adult
9 x7 adult
10 x8 adult
11 x7 adult
12 x8 adult
每行代表一个人。我想拉出所有成年人再次看到青少年的行。我不希望最初看到成年人的行再次成为成年人(ids x7和x8)。因此得到的data.frame应为:
id age
1 x1 juvenile
2 x2 juvenile
3 x1 adult
4 x2 adult
我专注于dplyr
解决方案。
答案 0 :(得分:6)
您可以按id
进行分组,只选择那些同时包含“青少年”和“成年人”的群组:
df %>%
group_by(id) %>%
filter(all(c('juvenile','adult') %in% age))
#Source: local data frame [4 x 2]
#Groups: id
#
# id age
#1 x1 juvenile
#2 x2 juvenile
#3 x1 adult
#4 x2 adult
答案 1 :(得分:4)
以下是使用dplyr
的等解决方案,在寻找更具体的阈值时可能会有用:
df %>%
group_by(id) %>%
filter(sum(age == 'juvenile') >= 1 & sum(age == 'adult') >= 1)
# Source: local data frame [4 x 2]
# Groups: id
#
# id age
# 1 x1 juvenile
# 2 x2 juvenile
# 3 x1 adult
# 4 x2 adult
答案 2 :(得分:2)
嘿,我认为这是你正在寻找的......为了展示而将其分解,但我确信你可以通过不重新分配过滤器的结果来使它更紧凑参数。
kids <- df %>%
filter(age == "juvenile")
adults <- df %>%
filter(age == "adult")
repeat_offender<-inner_join(kids,adults, by = "id")
repeat_offender
按要求实际返回答案......
this_solution_sucks<-gather(repeat_offender, agex, age, -id) %>% select(-agex)