对于y =(2 * x1)+(3 * x2)+ 4,将伪数据集(y,x1,x2)用于MLLib LinearRegressionWithSGD会产生错误的截距和权重。使用的实际数据是,
x1 x2 y
1 0.1 6.3
2 0.2 8.6
3 0.3 10.9
4 0.6 13.8
5 0.8 16.4
6 1.2 19.6
7 1.6 22.8
8 1.9 25.7
9 2.1 28.3
10 2.4 31.2
11 2.7 34.1
我设置了以下输入参数并获得了以下模型输出 [numteterations,step,miniBatchFraction,regParam] [拦截,[权重]]
需要知道,
以下是用于生成这些结果的代码。
object SciBenchTest {
def main(args: Array[String]): Unit = run
def run: Unit = {
val sparkConf = new SparkConf().setAppName("SparkBench")
val sc = new SparkContext(sparkConf)
// Load and parse the dummy data (y, x1, x2) for y = (2*x1) + (3*x2) + 4
// i.e. intercept should be 4, weights (2, 3)?
val data = sc.textFile("data/dummy.csv")
// LabeledPoint is (label, [features])
val parsedData = data.map { line =>
val parts = line.split(',')
val label = parts(2).toDouble
val features = Array(parts(0), parts(1)) map (_.toDouble)
LabeledPoint(label, Vectors.dense(features))
}
//parsedData.collect().foreach(x => println(x));
// Scale the features
/*val scaler = new StandardScaler(withMean = true, withStd = true)
.fit(parsedData.map(x => x.features))
val scaledData = parsedData
.map(x =>
LabeledPoint(x.label,
scaler.transform(Vectors.dense(x.features.toArray))))
scaledData.collect().foreach(x => println(x));*/
// Building the model: SGD = stochastic gradient descent
val numIterations = 20 //5
val step = 9.0 //9.0 //0.7
val miniBatchFraction = 0.6 //0.7 //0.65 //0.7
val regParam = 5.0 //3.0 //10.0
//val model = LinearRegressionWithSGD.train(parsedData, numIterations, step) //scaledData
val algorithm = new LinearRegressionWithSGD() //train(parsedData, numIterations)
algorithm.setIntercept(true)
algorithm.optimizer
//.setMiniBatchFraction(miniBatchFraction)
.setNumIterations(numIterations)
//.setStepSize(step)
//.setGradient(new LeastSquaresGradient())
//.setUpdater(new SquaredL2Updater()) //L1Updater //SimpleUpdater //SquaredL2Updater
//.setRegParam(regParam)
val model = algorithm.run(parsedData)
println(s">>>> Model intercept: ${model.intercept}, weights: ${model.weights}")
// Evaluate model on training examples
val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, point.features, prediction)
}
// Print out features, actual and predicted values...
valuesAndPreds.take(10).foreach({ case (v, f, p) =>
println(s"Features: ${f}, Predicted: ${p}, Actual: ${v}")
})
}
}
答案 0 :(得分:3)
如文档中所述 https://spark.apache.org/docs/1.0.2/mllib-optimization.html 为SGD方法选择最佳步长通常很精细。
我会尝试使用情人值,例如
// Build linear regression model
var regression = new LinearRegressionWithSGD().setIntercept(true)
regression.optimizer.setStepSize(0.001)
val model = regression.run(parsedData)
答案 1 :(得分:3)
添加步骤对我们没什么帮助。
我们使用以下参数来计算截距/权重和损失,并使用相同的方法构建线性回归模型以预测我们的特征。感谢@selvinsource指出我正确的方向。
val data = sc.textFile("data/dummy.csv")
// LabeledPoint is (label, [features])
val parsedData = data.map { line =>
val parts = line.split(',')
val label = parts(2).toDouble
val features = Array(parts(0), parts(1)) map (_.toDouble)
(label, MLUtils.appendBias(Vectors.dense(features)))
}.cache()
val numCorrections = 5 //10//5//3
val convergenceTol = 1e-4 //1e-4
val maxNumIterations = 20 //20//100
val regParam = 0.00001 //0.1//10.0
val (weightsWithIntercept, loss) = LBFGS.runLBFGS(
parsedData,
new LeastSquaresGradient(),//LeastSquaresGradient
new SquaredL2Updater(), //SquaredL2Updater(),SimpleUpdater(),L1Updater()
numCorrections,
convergenceTol,
maxNumIterations,
regParam,
Vectors.dense(0.0, 0.0, 0.0))//initialWeightsWithIntercept)
loss.foreach(println)
val model = new LinearRegressionModel(
Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)),
weightsWithIntercept(weightsWithIntercept.size - 1))
println(s">>>> Model intercept: ${model.intercept}, weights: ${model.weights}")
// Evaluate model on training examples
val valuesAndPreds = parsedData.collect().map { point =>
var prediction = model.predict(Vectors.dense(point._2.apply(0), point._2.apply(1)))
(prediction, point._1)
}
// Print out features, actual and predicted values...
valuesAndPreds.take(10).foreach({ case (v, f) =>
println(s"Features: ${f}, Predicted: ${v}")//, Actual: ${v}")
})