如何合并两个pandas DataFrames并聚合一个特定列

时间:2015-01-26 01:38:40

标签: python pandas

我有2个DataFrames:

         city  count    school
0    New York      1  school_3
1  Washington      1  School_4
2  Washington      1  School_5
3          LA      1  School_1
4          LA      1  School_4

         city  count    school
0    New York      1  School_3
1  Washington      1  School_1
2          LA      1  School_3
3          LA      2  School_4

我想得到这个结果:

         city  count    school
0    New York      2  school_3
1  Washington      1  School_1
2  Washington      1  School_4
3  Washington      1  School_5
4          LA      1  School_1
5          LA      1  School_3
6          LA      3  School_4

以下是代码。

d1 = [{'city':'New York', 'school':'school_3', 'count':1},
      {'city':'Washington', 'school':'School_4', 'count':1},
      {'city':'Washington', 'school':'School_5', 'count':1},
      {'city':'LA', 'school':'School_1', 'count':1},
      {'city':'LA', 'school':'School_4', 'count':1}]


d2 = [{'city':'New York', 'school':'School_3', 'count':1},
      {'city':'Washington', 'school':'School_1', 'count':1},
      {'city':'LA', 'school':'School_3', 'count':1},
      {'city':'LA', 'school':'School_4', 'count':2}]

x1 = pd.DataFrame(d1)
x2 = pd.DataFrame(d2)
#just get empty DataFrame
print pd.merge(x1, x2)

如何获得汇总结果?

3 个答案:

答案 0 :(得分:5)

你可以这样做:

>>> pd.concat([x1, x2]).groupby(["city", "school"], as_index=False)["count"].sum()
       city    school        count
0          LA  School_1      1
1          LA  School_3      1
2          LA  School_4      3
3    New York  School_3      1
4    New York  school_3      1
5  Washington  School_1      1
6  Washington  School_4      1
7  Washington  School_5      1

请注意,由于数据中的拼写错误(school_3 vs School_3),纽约出现了2次。

答案 1 :(得分:1)

这是使用pandas.DataFrame.merge(...)

与@ elyase解决方案略有不同的实现
x1.merge(x2,on=['city', 'school', 'count'], how='outer').groupby(['city', 'school'], as_index=False)['count'].sum()

ipython notebook %timeit计时时,此方法比@ elyase(<1ms)

略快
100 loops, best of 3: 6.25 ms per loop  #using concat(...) with @elyase's solution
100 loops, best of 3: 5.49 ms per loop #using merge(...) in this solution

此外,如果您想使用pandas aggregate功能,您也可以这样做:

x1.merge(x2,on=['city', 'school', 'count'], how='outer').groupby(['city', 'school'], as_index=False).agg(numpy.sum)

唯一的免责声明是使用agg(...)是3种解决方案中最慢的。

显然,所有3都提供了正确的结果:

         city    school  count
0          LA  School_1      1
1          LA  School_3      1
2          LA  School_4      3
3    New York  School_3      1
4    New York  school_3      1
5  Washington  School_1      1
6  Washington  School_4      1
7  Washington  School_5      1

答案 2 :(得分:0)

将熊猫作为pd导入 将numpy导入为np

pd.set_option('display.precision',16)

更多选择

pd.set_option('display.max_rows',500)

pd.set_option('display.max_columns',2500)

pd.set_option('display.width',2500)

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.set_option.html

pd.describe_option()

display.chop_threshold: [default: None] [currently: None]
: float or None
        if set to a float value, all float values smaller then the given threshold
        will be displayed as exactly 0 by repr and friends.
display.colheader_justify: [default: right] [currently: right]
: 'left'/'right'
        Controls the justification of column headers. used by DataFrameFormatter.
display.column_space: [default: 12] [currently: 12]No description available.

display.date_dayfirst: [default: False] [currently: False]
: boolean
        When True, prints and parses dates with the day first, eg 20/01/2005
display.date_yearfirst: [default: False] [currently: False]
: boolean
        When True, prints and parses dates with the year first, eg 2005/01/20
display.encoding: [default: UTF-8] [currently: UTF-8]
: str/unicode
        Defaults to the detected encoding of the console.
        Specifies the encoding to be used for strings returned by to_string,
        these are generally strings meant to be displayed on the console.
display.expand_frame_repr: [default: True] [currently: True]
: boolean
        Whether to print out the full DataFrame repr for wide DataFrames
        across multiple lines, `max_columns` is still respected, but the output will
        wrap-around across multiple "pages" if it's width exceeds `display.width`.
display.float_format: [default: None] [currently: <built-in method format of str object at 0x0000000008899AA8>]
: callable
        The callable should accept a floating point number and return
        a string with the desired format of the number. This is used
        in some places like SeriesFormatter.
        See core.format.EngFormatter for an example.
display.height: [default: 60] [currently: 60]
: int
        Deprecated.
    (Deprecated, use `display.height` instead.)

display.line_width: [default: 80] [currently: 80]
: int
        Deprecated.
    (Deprecated, use `display.width` instead.)

display.max_columns: [default: 20] [currently: 20]
: int
        max_rows and max_columns are used in __repr__() methods to decide if
        to_string() or info() is used to render an object to a string.  In case
        python/IPython is running in a terminal this can be set to 0 and pandas
        will correctly auto-detect the width the terminal and swap to a smaller
        format in case all columns would not fit vertically. The IPython notebook,
        IPython qtconsole, or IDLE do not run in a terminal and hence it is not
        possible to do correct auto-detection.
        'None' value means unlimited.
display.max_colwidth: [default: 50] [currently: 50]
: int
        The maximum width in characters of a column in the repr of
        a pandas data structure. When the column overflows, a "..."
        placeholder is embedded in the output.
display.max_info_columns: [default: 100] [currently: 100]
: int
        max_info_columns is used in DataFrame.info method to decide if
        per column information will be printed.
display.max_info_rows: [default: 1690785] [currently: 1690785]
: int or None
        max_info_rows is the maximum number of rows for which a frame will
        perform a null check on its columns when repr'ing To a console.
        The default is 1,000,000 rows. So, if a DataFrame has more
        1,000,000 rows there will be no null check performed on the
        columns and thus the representation will take much less time to
        display in an interactive session. A value of None means always
        perform a null check when repr'ing.
display.max_rows: [default: 60] [currently: 60]
: int
        This sets the maximum number of rows pandas should output when printing
        out various output. For example, this value determines whether the repr()
        for a dataframe prints out fully or just a summary repr.
        'None' value means unlimited.
display.max_seq_items: [default: None] [currently: None]
: int or None

        when pretty-printing a long sequence, no more then `max_seq_items`
        will be printed. If items are ommitted, they will be denoted by the addition
        of "..." to the resulting string.

        If set to None, the number of items to be printed is unlimited.
display.mpl_style: [default: None] [currently: None]
: bool

        Setting this to 'default' will modify the rcParams used by matplotlib
        to give plots a more pleasing visual style by default.
        Setting this to None/False restores the values to their initial value.
display.multi_sparse: [default: True] [currently: True]
: boolean
        "sparsify" MultiIndex display (don't display repeated
        elements in outer levels within groups)
display.notebook_repr_html: [default: True] [currently: False]
: boolean
        When True, IPython notebook will use html representation for
        pandas objects (if it is available).
display.pprint_nest_depth: [default: 3] [currently: 3]
: int
        Controls the number of nested levels to process when pretty-printing
display.precision: [default: 7] [currently: 7]
: int
        Floating point output precision (number of significant digits). This is
        only a suggestion
display.width: [default: 80] [currently: 80]
: int
        Width of the display in characters. In case python/IPython is running in
        a terminal this can be set to None and pandas will correctly auto-detect the
        width.
        Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
        terminal and hence it is not possible to correctly detect the width.
mode.sim_interactive: [default: False] [currently: False]
: boolean
        Whether to simulate interactive mode for purposes of testing
mode.use_inf_as_null: [default: False] [currently: False]
: boolean
        True means treat None, NaN, INF, -INF as null (old way),
        False means None and NaN are null, but INF, -INF are not null
        (new way).