所以我的任务是查看并检查一个正整数,如果它是回文。我已经完成了所有事情但在最后一块上需要帮助。并且这是从用户给出的那个产生新的回文的任务。我在使用while循环的正确轨道上还是应该使用其他东西?所以结果就是如果你把192放回去生成一个回文.... 483 867 1635 6996
"""Checks if the given, positive number, is in fact a palindrome"""
def palindrome(N):
x = list(str(N))
if (x[:] == x[::-1]):
return True
else: return False
"""Reverses the given positive integer"""
def reverse_int(N):
r = str(N)
x = r[::-1]
return int(x)
def palindrome_generator():
recieve = int(input("Enter a positive integer. "))
if (palindrome(recieve) == True):
print(recieve, " is a palindrome!")
else:
print("Generating a palindrome...")
while palindrome(recieve) == False:
reverse_int(recieve) + recieve
答案 0 :(得分:3)
如果我理解你的任务正确,以下应该可以解决问题:
def reverse(num):
return num[::-1]
def is_pal(num):
return num == reverse(num)
inp = input("Enter a positive number:")
if is_pal(inp):
print("{} is a palindrome".format(inp))
else:
print("Generating...")
while not is_pal(inp):
inp = str(int(inp) + int(reverse(inp)))
print(inp)
变量inp
始终是一个字符串,只有算术转换为int
。
答案 1 :(得分:1)
我已经使用这种解决方案很多年了,以检查数字和文本字符串的回文。
def is_palindrome(s):
s = ''.join(e for e in str(s).replace(' ','').lower() if e.isalnum())
_len = len(s)
if _len % 2 == 0:
if s[:int(_len/2)] == s[int(_len/2):][::-1]:
return True
else:
if s[int(_len/2+1):][::-1] == s[:int(_len/2)]:
return True
return False
答案 2 :(得分:-1)
这是一个按位补码和逻辑AND和OR运算符
java.lang.IllegalStateException: In partition 3 of xxxxx, with consumer group delta, request seqNo 90273 is less than the received seqNo 90274. The earliest seqNo is 16302 and the last seqNo is 90322
at org.apache.spark.eventhubs.client.CachedEventHubsReceiver.checkCursor(CachedEventHubsReceiver.scala:152)
at org.apache.spark.eventhubs.client.CachedEventHubsReceiver.org$apache$spark$eventhubs$client$CachedEventHubsReceiver$$receive(CachedEventHubsReceiver.scala:172)
at org.apache.spark.eventhubs.client.CachedEventHubsReceiver$.receive(CachedEventHubsReceiver.scala:237)
at org.apache.spark.eventhubs.rdd.EventHubsRDD.compute(EventHubsRDD.scala:120)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:140)
at org.apache.spark.scheduler.Task.run(Task.scala:113)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$13.apply(Executor.scala:533)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1541)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:539)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2362)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2350)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2349)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2349)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:1102)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:1102)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1102)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2581)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2529)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2517)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:897)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2280)
at org.apache.spark.sql.execution.collect.Collector.runSparkJobs(Collector.scala:270)
at org.apache.spark.sql.execution.collect.Collector.collect(Collector.scala:280)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:80)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:86)
at org.apache.spark.sql.execution.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:508)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollectResult(limit.scala:57)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectResult(Dataset.scala:2890)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3508)
at org.apache.spark.sql.Dataset$$anonfun$collect$1.apply(Dataset.scala:2857)
at org.apache.spark.sql.Dataset$$anonfun$collect$1.apply(Dataset.scala:2857)
at org.apache.spark.sql.Dataset$$anonfun$54.apply(Dataset.scala:3492)
at org.apache.spark.sql.Dataset$$anonfun$54.apply(Dataset.scala:3487)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withCustomExecutionEnv$1.apply(SQLExecution.scala:111)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:240)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:97)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:170)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withAction(Dataset.scala:3487)
at org.apache.spark.sql.Dataset.collect(Dataset.scala:2857)
at org.apache.spark.sql.execution.streaming.MemorySink.addBatch(memory.scala:280)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$5$$anonfun$apply$17.apply(MicroBatchExecution.scala:569)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withCustomExecutionEnv$1.apply(SQLExecution.scala:111)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:240)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:97)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:170)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$5.apply(MicroBatchExecution.scala:567)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:263)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:61)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch(MicroBatchExecution.scala:566)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:208)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:176)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:176)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:263)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:61)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:176)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:170)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:296)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:208)
Caused by: java.lang.IllegalStateException: In partition 3 of b2bhub, with consumer group delta, request seqNo 90273 is less than the received seqNo 90274. The earliest seqNo is 16302 and the last seqNo is 90322
at org.apache.spark.eventhubs.client.CachedEventHubsReceiver.checkCursor(CachedEventHubsReceiver.scala:152)
at org.apache.spark.eventhubs.client.CachedEventHubsReceiver.org$apache$spark$eventhubs$client$CachedEventHubsReceiver$$receive(CachedEventHubsReceiver.scala:172)
at org.apache.spark.eventhubs.client.CachedEventHubsReceiver$.receive(CachedEventHubsReceiver.scala:237)
at org.apache.spark.eventhubs.rdd.EventHubsRDD.compute(EventHubsRDD.scala:120)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:140)
at org.apache.spark.scheduler.Task.run(Task.scala:113)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$13.apply(Executor.scala:533)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1541)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:539)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Abba是回文症