最近我在这里询问了以下问题,询问如何为任意多态ADT(代数数据类型)创建一个通用映射函数和Functor
的通用实例,如Lists,Trees等:< / p>
Functor instance for generic polymorphic ADTs in Haskell?
现在,我正在尝试重新制定上述内容以与recursion-schemes
兼容。即,不是定义基础仿函数,而是将类型定义为其固定点,我想一方面定义类型,另一方面定义基本仿函数,并使用Base
族类型关联它们。 / p>
所以不要这样做:
data ListF a b = NilF | ConsF a b
newtype Fix f = Fix { unFix :: f (Fix f) }
type List a = Fix (ListF a)
我想这样做:
data ListF a b = NilF | ConsF a b
data List a = Nil | Cons a (List a)
type instance Base (List a) = ListF a
这样我可以利用recursion-schemes
库的强大功能,同时仍然能够为这些多态类型定义通用fmap
。不仅如此,如果能够使用“普通”类型而不是修复点的类型同义词,这是一种更愉快的体验。
最初我考虑过一方面有一个Bifunctor
实例,并以某种方式强制或使其等于相应的Base
系列实例。目前我只能考虑使用a :~: b
中的Data.Type.Equality
。这是我到目前为止所得到的:
{-# LANGUAGE TypeOperators, Rank2Types #-}
import Data.Bifunctor
import Data.Functor.Foldable
import Data.Type.Equality
gmap :: (Bifunctor p, Foldable (f a), Unfoldable (f b)) =>
(forall x. p x :~: Base (f x)) -> (a -> b) -> f a -> f b
gmap refl f = cata alg
where
alg = embed .
castWith (apply refl Refl) .
bimap f id .
castWith (apply (sym refl) Refl)
我的问题在于尝试定义Functor
的实例。我不知道在定义实例时如何指定那些特定的类型约束。
我正在考虑以某种方式创建类型类Equals
,并做这样的事情:
instance (Bifunctor p, Foldable (f a), Unfoldable (f b), Equals (p a) (Base (f a)))
=> Functor f where
但是我不知道这是否可行,也不知道我是否以正确的方式接近它(例如我不确定我的gmap
的定义是否正确)。
供参考,这是原始SO问题中通用gmap
的定义:
gmap :: (Bifunctor f) => (a -> b) -> Fix (f a) -> Fix (f b)
gmap f = unwrapFixBifunctor . cata alg . wrapFixBifunctor
where
alg = Fix . bimap f id
unwrapFixBifunctor :: (Bifunctor f) => Fix (WrappedBifunctor f a) -> Fix (f a)
unwrapFixBifunctor = Fix . unwrapBifunctor . fmap unwrapFixBifunctor . unFix
wrapFixBifunctor :: (Bifunctor f) => Fix (f a) -> Fix (WrappedBifunctor f a)
wrapFixBifunctor = Fix . fmap wrapFixBifunctor . WrapBifunctor . unFix
有人指出,gmap
的以下定义会更为一般,不需要任何类型级别相等的奇怪应用:
gmap :: (Foldable t, Unfoldable d, Bifunctor p, Base d ~ p b, Base t ~ p a)
=> (a -> b) -> t -> d
gmap f = cata ( embed . bimap f id )
但是,我仍然找不到创建具有类似类型约束的Functor
实例的方法
答案 0 :(得分:1)
With a little help from @kosmikus,只要您对UndecidableInstances
感到满意,我就能够合并一个有效的版本。
我们的想法是从a
的上下文中移除对b
和gmap
的所有引用,要求forall x. Foldable (f x)
等等,使用{{3}进行编码} package:
{-# LANGUAGE TypeFamilies, ScopedTypeVariables, TypeOperators, ConstraintKinds #-}
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FlexibleContexts #-}
import Data.Bifunctor
import Data.Functor.Foldable
import Data.Constraint
import Data.Constraint.Forall
-- https://stackoverflow.com/a/28067872/477476
class (p x ~ Base (f x)) => Based p f x
instance (p x ~ Base (f x)) => Based p f x
gmap :: forall p f a b. ( Bifunctor p
, ForallF Foldable f
, ForallF Unfoldable f
, Forall (Based p f))
=> (a -> b) -> f a -> f b
gmap f = case (instF :: ForallF Foldable f :- Foldable (f a)) of
Sub Dict -> case (instF :: ForallF Unfoldable f :- Unfoldable (f b)) of
Sub Dict -> case (inst :: Forall (Based p f) :- Based p f a) of
Sub Dict -> case (inst :: Forall (Based p f) :- Based p f b) of
Sub Dict -> cata (embed . bimap f id)
在a
和b
退出的情况下,我们可以将gmap
变为fmap
:
{-# LANGUAGE UndecidableInstances #-}
instance (Bifunctor p, ForallF Foldable f, ForallF Unfoldable f, Forall (Based p f)) => Functor f where
fmap = gmap
编辑添加:上述实例的问题在于它会匹配任何类型的正确类型,如@gonzaw所述:如果你有
data ListT a = NilT
| ConsT a (ListT a)
data ListF a b = NilF
| ConsF a b
type instance Base (ListT a) = ListF a
instance Bifunctor ListF where ...
instance Functor (ListF a) where ...
instance Foldable (ListT a) where ...
instance Unfoldable (ListT a) where ...
然后你得到的比你讨价还价更多,而且通用的Functor
实例和ListF a
(!)的实例重叠。
你可以添加一层newtype包装器来解决这个问题:如果相反,你有
newtype F f x = F{ unF :: (f x) }
instance (Bifunctor p, ForallF Foldable f, ForallF Unfoldable f, Forall (Based p f)) => Functor (F f) where
fmap f = F . gmap f . unF
type ListT' = F ListT
然后最后是以下类型:
*Main> unF . fmap (+1) . F $ ConsT 1 $ ConsT 2 NilT
ConsT 2 (ConsT 3 NilT)
这个额外的newtype
包裹层是否可以为您所接受,这是您必须要做的事情。