OpenCV:Lucas Kanade应用于特定区域(检测面部特征)

时间:2015-01-15 03:05:08

标签: opencv coordinates feature-selection haar-classifier opencv3.0

我正在尝试使用Haar级联分类的Lucas Kanade算法进行面部跟踪。 Lucas Kanade是成功的并且可以跟踪用户,但不幸的是,一些检测点的好功能被浪费在后台的角落上。我希望使用Haar Cascade能够检测到获得检测到的脸部坐标的事实,并将Lucas Kanade仅应用于该禁区内。

基本上,我想使用Haar Cascade来检测事实,获取x,y,w和h值,并使用这些坐标在该受限区域内应用Lucas Kanade(这样就不会浪费任何东西来分配好的特征到背景,只检测面部特征)

执行Lucas Kanade算法的代码行是这段代码:

p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)

我该怎么做?

代码:

from matplotlib import pyplot as plt
import numpy as np

import cv2

rectangle_x = 0

face_classifier = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')

cap = cv2.VideoCapture(0)


# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 200,
                       qualityLevel = 0.01,
                       minDistance = 10,
                       blockSize = 7 )

# Parameters for lucas kanade optical flow
lk_params = dict( winSize  = (15,15),
                  maxLevel = 2,
                  criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

# Create some random colors
color = np.random.randint(0,255,(100,3))

# Take first frame and find corners in it
ret, old_frame = cap.read()

cv2.imshow('Old_Frame', old_frame)
cv2.waitKey(0)
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
restart = True
face = face_classifier.detectMultiScale(old_gray, 1.2, 4)

if len(face) == 0:
    print "This is empty"

for (x,y,w,h) in face:
    focused_face = old_frame[y: y+h, x: x+w]



cv2.imshow('Old_Frame', old_frame)

face_gray = cv2.cvtColor(old_frame,cv2.COLOR_BGR2GRAY)

gray = cv2.cvtColor(focused_face,cv2.COLOR_BGR2GRAY)

corners_t = cv2.goodFeaturesToTrack(gray, mask = None, **feature_params)
corners = np.int0(corners_t)




for i in corners:
    ix,iy = i.ravel()
    cv2.circle(focused_face,(ix,iy),3,255,-1)
    cv2.circle(old_frame,(x+ix,y+iy),3,255,-1)

    print ix, " ", iy

plt.imshow(old_frame),plt.show()


##########

#############################
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
#############################
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)

print "X: ", x
print "Y: ", y

while(1):
    ret,frame = cap.read()
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # calculate optical flow
    p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)

    # Select good points
    good_new = p1[st==1]
    good_old = p0[st==1]

    # draw the circles
    for i,(new,old) in enumerate(zip(good_new,good_old)):
        a,b = new.ravel()
        c,d = old.ravel()
        cv2.circle(frame,(a, b),5,color[i].tolist(),-1)
        if i == 99:
            break

    cv2.imshow('frame',frame)
    k = cv2.waitKey(30) & 0xff
    if k == 27:
        break

    # Now update the previous frame and previous points
    old_gray = frame_gray.copy()
    p0 = good_new.reshape(-1,1,2)

cv2.destroyAllWindows()
cap.release()

1 个答案:

答案 0 :(得分:0)

以下是代码段:

p0 = np.array([[[x,y]], [[x0,y0]]], np.float32)

只需替换原始代码中的p0,然后将x,x0 ...分配给您想要的点   - 确保它是一个二维阵列   - 对于单精度

,类型为float 32