函数内部的Python等价的静态变量是什么?

时间:2008-11-10 23:33:36

标签: python

这个C / C ++代码的惯用Python是什么?

void foo()
{
    static int counter = 0;
    counter++;
    printf("counter is %d\n", counter);
}

具体来说,如何在功能级别实现静态成员,而不是类级别?将函数放入类中会改变什么吗?

29 个答案:

答案 0 :(得分:601)

有点逆转,但这应该有效:

def foo():
    foo.counter += 1
    print "Counter is %d" % foo.counter
foo.counter = 0

如果您希望计数器初始化代码位于顶部而不是底部,则可以创建装饰器:

def static_var(varname, value):
    def decorate(func):
        setattr(func, varname, value)
        return func
    return decorate

然后使用这样的代码:

@static_var("counter", 0)
def foo():
    foo.counter += 1
    print "Counter is %d" % foo.counter

不幸的是,它仍然需要您使用foo.前缀。


编辑(感谢ony):这看起来更好:

def static_vars(**kwargs):
    def decorate(func):
        for k in kwargs:
            setattr(func, k, kwargs[k])
        return func
    return decorate

@static_vars(counter=0)
def foo():
    foo.counter += 1
    print "Counter is %d" % foo.counter

答案 1 :(得分:196)

您可以向函数添加属性,并将其用作静态变量。

def myfunc():
  myfunc.counter += 1
  print myfunc.counter

# attribute must be initialized
myfunc.counter = 0

或者,如果您不想在函数外部设置变量,可以使用hasattr()来避免AttributeError异常:

def myfunc():
  if not hasattr(myfunc, "counter"):
     myfunc.counter = 0  # it doesn't exist yet, so initialize it
  myfunc.counter += 1

无论如何,静态变量相当罕见,你应该为这个变量找到一个更好的位置,很可能是在一个类中。

答案 2 :(得分:169)

还可以考虑:

def foo():
    try:
        foo.counter += 1
    except AttributeError:
        foo.counter = 1

推理:

  • 多pythonic(ask for forgiveness not permission
  • 使用异常(仅抛出一次)而不是if分支(认为StopIteration例外)

答案 3 :(得分:37)

其他答案已经证明了你应该这样做的方式。这是你不应该的方式:

>>> def foo(counter=[0]):
...   counter[0] += 1
...   print("Counter is %i." % counter[0]);
... 
>>> foo()
Counter is 1.
>>> foo()
Counter is 2.
>>> 

默认值仅在首次评估函数时初始化,而不是每次执行时初始化,因此您可以使用列表或任何其他可变对象来存储静态值。

答案 4 :(得分:29)

很多人已经建议测试' hasattr'但有一个更简单的答案:

def func():
    func.counter = getattr(func, 'counter', 0) + 1

没有尝试/除了,没有测试hasattr,只有getattr默认。

答案 5 :(得分:23)

Python没有静态变量,但您可以通过定义可调用的类对象然后将其用作函数来伪造它。 Also see this answer

class Foo(object):
  # Class variable, shared by all instances of this class
  counter = 0

  def __call__(self):
    Foo.counter += 1
    print Foo.counter

# Create an object instance of class "Foo," called "foo"
foo = Foo()

# Make calls to the "__call__" method, via the object's name itself
foo() #prints 1
foo() #prints 2
foo() #prints 3

请注意__call__使一个类(对象)的实例可以通过自己的名称调用。这就是上面调用foo()调用类__call__方法的原因。 From the documentation

  

通过在类中定义__call__()方法,可以使任意类的实例可调用。

答案 6 :(得分:22)

这是一个完全封装的版本,不需要外部初始化调用:

def fn():
    fn.counter=vars(fn).setdefault('counter',-1)
    fn.counter+=1
    print (fn.counter)

在Python中,函数是对象,我们可以通过特殊属性__dict__简单地向其添加或修改成员变量。内置vars()会返回特殊属性__dict__

编辑:注意,与替代try:except AttributeError答案不同,使用此方法,变量将始终为初始化后的代码逻辑做好准备。我认为以下的try:except AttributeError替代品将更少干燥和/或具有尴尬的流程:

def Fibonacci(n):
   if n<2: return n
   Fibonacci.memo=vars(Fibonacci).setdefault('memo',{}) # use static variable to hold a results cache
   return Fibonacci.memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2)) # lookup result in cache, if not available then calculate and store it

EDIT2:我只推荐上述方法,当从多个位置调用该函数时。相反,如果只在一个地方调用该函数,最好使用nonlocal

def TheOnlyPlaceStaticFunctionIsCalled():
    memo={}
    def Fibonacci(n):
       nonlocal memo  # required in Python3. Python2 can see memo
       if n<2: return n
       return memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2))
    ...
    print (Fibonacci(200))
    ...

答案 7 :(得分:11)

使用生成器函数生成迭代器。

def foo_gen():
    n = 0
    while True:
        n+=1
        yield n

然后像

一样使用它
foo = foo_gen().next
for i in range(0,10):
    print foo()

如果你想要一个上限:

def foo_gen(limit=100000):
    n = 0
    while n < limit:
       n+=1
       yield n

如果迭代器终止(如上例所示),你也可以直接循环它,比如

for i in foo_gen(20):
    print i

当然,在这些简单的情况下,最好使用xrange:)

以下是yield statement的文档。

答案 8 :(得分:6)

将函数的属性用作静态变量有一些潜在的缺点:

  • 每次要访问变量时,都必须写出函数的全名。
  • 外部代码可以轻松访问变量并弄乱值。

第二个问题的惯用python可能是用一个前导下划线来命名变量,以表示它不是要访问的,同时在事后保持可访问性。

另一种选择是使用词法闭包的模式,python 3中的nonlocal关键字支持这种模式。

def make_counter():
    i = 0
    def counter():
        nonlocal i
        i = i + 1
        return i
    return counter
counter = make_counter()

可悲的是,我知道无法将此解决方案封装到装饰器中。

答案 9 :(得分:6)

def staticvariables(**variables):
    def decorate(function):
        for variable in variables:
            setattr(function, variable, variables[variable])
        return function
    return decorate

@staticvariables(counter=0, bar=1)
def foo():
    print(foo.counter)
    print(foo.bar)

与上面的vincent代码非常相似,它将用作函数装饰器,并且必须使用函数名作为前缀来访问静态变量。这段代码的优点(虽然不可否认任何人都可能很聪明地弄明白)是你可以拥有多个静态变量并以更传统的方式初始化它们。

答案 10 :(得分:6)

_counter = 0
def foo():
   global _counter
   _counter += 1
   print 'counter is', _counter

Python通常使用下划线来表示私有变量。 C在函数中声明静态变量的唯一原因是将它隐藏在函数之外,这不是真正的惯用Python。

答案 11 :(得分:5)

所有以前的解决方案都将计数器属性附加到函数,通常使用复杂的逻辑来处理初始化。这不适合新代码。

在Python 3中,正确的方法是使用nonlocal语句:

counter = 0
def foo():
    nonlocal counter
    counter += 1
    print(f'counter is {counter}')

有关nonlocal声明的说明,请参阅PEP 3104

答案 12 :(得分:4)

更具可读性,但更详细:

>>> def func(_static={'counter': 0}):
...     _static['counter'] += 1
...     print _static['counter']
...
>>> func()
1
>>> func()
2
>>>

答案 13 :(得分:2)

this question提示,我是否可以提出另一种可能更好用的替代方案,对于这两种方法和功能看起来都是一样的:

@static_var2('seed',0)
def funccounter(statics, add=1):
    statics.seed += add
    return statics.seed

print funccounter()       #1
print funccounter(add=2)  #3
print funccounter()       #4

class ACircle(object):
    @static_var2('seed',0)
    def counter(statics, self, add=1):
        statics.seed += add
        return statics.seed

c = ACircle()
print c.counter()      #1
print c.counter(add=2) #3
print c.counter()      #4
d = ACircle()
print d.counter()      #5
print d.counter(add=2) #7
print d.counter()      #8    

如果您喜欢这种用法,请参阅以下内容:

class StaticMan(object):
    def __init__(self):
        self.__dict__['_d'] = {}

    def __getattr__(self, name):
        return self.__dict__['_d'][name]
    def __getitem__(self, name):
        return self.__dict__['_d'][name]
    def __setattr__(self, name, val):
        self.__dict__['_d'][name] = val
    def __setitem__(self, name, val):
        self.__dict__['_d'][name] = val

def static_var2(name, val):
    def decorator(original):
        if not hasattr(original, ':staticman'):    
            def wrapped(*args, **kwargs):
                return original(getattr(wrapped, ':staticman'), *args, **kwargs)
            setattr(wrapped, ':staticman', StaticMan())
            f = wrapped
        else:
            f = original #already wrapped

        getattr(f, ':staticman')[name] = val
        return f
    return decorator

答案 14 :(得分:2)

惯用方式是使用,它可以具有属性。如果您需要实例不分开,请使用单例。

有很多方法可以伪造或者将“静态”变量伪装成Python(到目前为止没有提到的是有一个可变的默认参数),但这不是 Pythonic,惯用这样做的方式。只需使用一个班级。

或者可能是生成器,如果您的使用模式适合。

答案 15 :(得分:2)

尝试了几种方法后,我最终使用了@warvariuc答案的改进版本:

import types

def func(_static=types.SimpleNamespace(counter=0)):
    _static.counter += 1
    print(_static.counter)

答案 16 :(得分:2)

您可以随时创建所谓的“函数对象”,并为其提供标准(非静态)成员变量,而不是创建具有静态局部变量的函数。

由于您给出了一个编写C ++的示例,我将首先解释C ++中的“函数对象”。 “函数对象”只是具有重载operator()的任何类。该类的实例将表现得像函数一样。例如,即使int x = square(5);是一个对象(具有重载square)而且技术上不是“函数”,您也可以编写operator()。您可以为函数对象提供可以为类对象提供的任何功能。

# C++ function object
class Foo_class {
    private:
        int counter;     
    public:
        Foo_class() {
             counter = 0;
        }
        void operator() () {  
            counter++;
            printf("counter is %d\n", counter);
        }     
   };
   Foo_class foo;

在Python中,除了方法名为operator()之外,我们还可以重载__call__

这是一个类定义:

class Foo_class:
    def __init__(self): # __init__ is similair to a C++ class constructor
        self.counter = 0
        # self.counter is like a static member
        # variable of a function named "foo"
    def __call__(self): # overload operator()
        self.counter += 1
        print("counter is %d" % self.counter);
foo = Foo_class() # call the constructor

以下是正在使用的类的示例:

from foo import foo

for i in range(0, 5):
    foo() # function call

打印到控制台的输出是:

counter is 1
counter is 2
counter is 3
counter is 4
counter is 5

如果您希望函数接受输入参数,也可以将它们添加到__call__

# FILE: foo.py - - - - - - - - - - - - - - - - - - - - - - - - -

class Foo_class:
    def __init__(self):
        self.counter = 0
    def __call__(self, x, y, z): # overload operator()
        self.counter += 1
        print("counter is %d" % self.counter);
        print("x, y, z, are %d, %d, %d" % (x, y, z));
foo = Foo_class() # call the constructor

# FILE: main.py - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

from foo import foo

for i in range(0, 5):
    foo(7, 8, 9) # function call

# Console Output - - - - - - - - - - - - - - - - - - - - - - - - - - 

counter is 1
x, y, z, are 7, 8, 9
counter is 2
x, y, z, are 7, 8, 9
counter is 3
x, y, z, are 7, 8, 9
counter is 4
x, y, z, are 7, 8, 9
counter is 5
x, y, z, are 7, 8, 9

答案 17 :(得分:1)

我个人更喜欢以下装饰者。每个人都有自己的。

def staticize(name, factory):
    """Makes a pseudo-static variable in calling function.

    If name `name` exists in calling function, return it. 
    Otherwise, saves return value of `factory()` in 
    name `name` of calling function and return it.

    :param name: name to use to store static object 
    in calling function
    :type name: String
    :param factory: used to initialize name `name` 
    in calling function
    :type factory: function
    :rtype: `type(factory())`

    >>> def steveholt(z):
    ...     a = staticize('a', list)
    ...     a.append(z)
    >>> steveholt.a
    Traceback (most recent call last):
    ...
    AttributeError: 'function' object has no attribute 'a'
    >>> steveholt(1)
    >>> steveholt.a
    [1]
    >>> steveholt('a')
    >>> steveholt.a
    [1, 'a']
    >>> steveholt.a = []
    >>> steveholt.a
    []
    >>> steveholt('zzz')
    >>> steveholt.a
    ['zzz']

    """
    from inspect import stack
    # get scope enclosing calling function
    calling_fn_scope = stack()[2][0]
    # get calling function
    calling_fn_name = stack()[1][3]
    calling_fn = calling_fn_scope.f_locals[calling_fn_name]
    if not hasattr(calling_fn, name):
        setattr(calling_fn, name, factory())
    return getattr(calling_fn, name)

答案 18 :(得分:1)

使用装饰器和闭包

以下装饰器可用于创建静态函数变量。它用自身的返回值替换声明的函数。这意味着被修饰的函数必须返回一个函数。

def static_inner_self(func):
    return func()

然后在一个函数上使用装饰器,该函数返回另一个带有捕获变量的函数:

@static_inner_self
def foo():
    counter = 0
    def foo():
        nonlocal counter
        counter += 1
        print(f"counter is {counter}")
    return foo

nonlocal 是必需的,否则 Python 认为 counter 变量是局部变量而不是捕获的变量。由于变量赋值 counter += 1,Python 的行为与此类似。函数中的任何赋值都会使 Python 认为该变量是局部变量。

如果你不是在内部函数中赋值给变量,那么你可以忽略nonlocal语句,例如,在这个函数中我用来缩进一个字符串的行,Python可以推断出变量是 nonlocal:

@static_inner_self
def indent_lines():
    import re
    re_start_line = re.compile(r'^', flags=re.MULTILINE)
    def indent_lines(text, indent=2):
        return re_start_line.sub(" "*indent, text)
    return indent_lines

附言有一个已删除的答案提出了相同的建议。不知道作者为什么删了。 https://stackoverflow.com/a/23366737/195417

答案 19 :(得分:1)

全局声明提供了此功能。在下面的示例(使用“ f”的python 3.5或更高版本)中, counter 变量在函数外部定义。在功能中将其定义为全局表示表示该功能之外的“全局”版本应可用于该功能。因此,每次函数运行时,它都会修改函数外部的值,并将其保留在函数之外。

...
container: 'html',
...

答案 20 :(得分:1)

Soulution n + = 1

def foo():
  foo.__dict__.setdefault('count', 0)
  foo.count += 1
  return foo.count

答案 21 :(得分:1)

这个答案表明,setdefault并不能真正满足OPs如何创建静态 本地 变量的问题。

def fn():
    fn.counter = vars(fn).setdefault('counter',-1)

它的工作时间与fn一样长。以每个变量名称为前缀。如果你这样删除它们:

def fn():
   counter = vars(fn).setdefault('counter',-1)
   counter += 1
   print (counter)

没有错误,但计数器总是0,这告诉我vars(fn)不是访问局部变量,而是一个全局的,可能是装饰器或属性存储。

如果这有效,那将是我的首选解决方案。但是,由于它没有,我倾向于使用完全封装的类定义来创建这样的静态变量。

恕我直言,这是最直截了当的。当然,这取决于你是否更熟悉功能与OOP编码风格。

答案 22 :(得分:1)

当然这是一个老问题,但我想我可能会提供一些更新。

似乎性能论证已经过时了。 相同的测试套件似乎给出了siInt_try和isInt_re2的类似结果。 当然结果各不相同,但这是我的计算机上的一个会话,内核4.3.01与Xeon W3550的python 3.4.4。 我已经运行了几次,结果似乎相似。 我将全局正则表达式转换为函数static,但性能差异可以忽略不计。

isInt_try: 0.3690
isInt_str: 0.3981
isInt_re: 0.5870
isInt_re2: 0.3632

由于性能问题已经解决,似乎try / catch会生成最具前瞻性和防止角落的代码,所以可能只是将其包装在函数中

答案 23 :(得分:1)

如果您不介意使用时髦的呼叫签名,那么可调用对象(如https://stackoverflow.com/a/279598/916373)的另一个(不推荐!)扭曲就是

meteor add twbs:bootstrap
class foo(object):
    counter = 0;
    @staticmethod
    def __call__():
        foo.counter += 1
        print "counter is %i" % foo.counter

答案 24 :(得分:1)

Python方法中的静态变量

class Count:
    def foo(self):
        try: 
            self.foo.__func__.counter += 1
        except AttributeError: 
            self.foo.__func__.counter = 1

        print self.foo.__func__.counter

m = Count()
m.foo()       # 1
m.foo()       # 2
m.foo()       # 3

答案 25 :(得分:0)

这个答案建立在@claudiu的回答之上。

我发现我的代码变得越来越不清楚 每当我打算访问静态变量时,都要预先添加函数名。

即,在我的功能代码中,我更愿意写:

print(statics.foo)

而不是

print(my_function_name.foo)

所以,我的解决方案是:

  1. 向函数
  2. 添加statics属性
  3. 在函数范围中,添加一个局部变量statics作为my_function.statics的别名
  4. from bunch import *
    
    def static_vars(**kwargs):
        def decorate(func):
            statics = Bunch(**kwargs)
            setattr(func, "statics", statics)
            return func
        return decorate
    
    @static_vars(name = "Martin")
    def my_function():
        statics = my_function.statics
        print("Hello, {0}".format(statics.name))
    

    备注

    我的方法使用名为Bunch的类,这是一个支持的字典 属性风格的访问,一个JavaScript(参见original article关于它,大约2000年)

    可以通过pip install bunch

    安装

    它也可以像这样手写:

    class Bunch(dict):
        def __init__(self, **kw):
            dict.__init__(self,kw)
            self.__dict__ = self
    

答案 26 :(得分:0)

基于丹尼尔的答案(添加项):

class Foo(object): 
    counter = 0  

def __call__(self, inc_value=0):
    Foo.counter += inc_value
    return Foo.counter

foo = Foo()

def use_foo(x,y):
    if(x==5):
        foo(2)
    elif(y==7):
        foo(3)
    if(foo() == 10):
        print("yello")


use_foo(5,1)
use_foo(5,1)
use_foo(1,7)
use_foo(1,7)
use_foo(1,1)

我想添加此部分的原因是,作为一个实际示例,静态变量不仅用于增加某个值,而且还检查静态var是否等于某个值。

静态变量仍然受到保护,并且仅在use_foo()函数的范围内使用

在此示例中,对foo()的调用功能完全相同(相对于对应的c ++而言):

stat_c +=9; // in c++
foo(9)  #python equiv

if(stat_c==10){ //do something}  // c++

if(foo() == 10):      # python equiv
  #add code here      # python equiv       

Output :
yello
yello

如果将Foo类严格地定义为单例类,那将是理想的。这会使它更具Pythonic性。

答案 27 :(得分:0)

但是,这是一篇安静的老文章,由于我有一个不同的惯用目标,因此我提出以下内容:

在一个函数中,我只想通过一个计算值初始化一次变量,这可能会花费一些成本。

因为我喜欢出色的写作,并且是一位古老的C风格程序员。 我试图定义类似宏的文字:

def  Foo () :
    StaticVar( Foo, ‘Var’, CalculateStatic())
    StaticVar( Foo, ‘Step’, CalculateStep())
    Foo.Var += Foo.Step
    print(‘Value of Var : ‘, Foo.Var)

然后,我这样写了“ StaticVar”:

def StaticVar(Cls, Var, StaticVal) :
    if not hasattr(Cls, Var) :
        setattr(Cls, Var, StaticVal)

Python更好:

def StaticVars(Cls, **Vars) :
    for Var, StaticVal in Vars.items() :
        if not hasattr(Cls, Var) :
            setattr(Cls, Var, StaticVal)

def  Foo () :
    StaticVars( Foo, Var = CalculateStatic(),Step= CalculateStep()))
    Foo.Var += Foo. Step
    print(‘Value of Var : ‘, Foo.Var)

这是一种不错的书写方式,但是我的目标(仅一次调用初始化函数)没有达到(只需在初始化函数中添加打印件)! 事实是,在函数调用中,参数值是在调用函数之前求值的。

def CalculateStatic() :
    print("Costly Initialization")
    return 0

为了达到我的目标,我宁愿写:

def  Foo () :
    if not hasattr(Foo, ‘Var’) :
        setattr ( Foo, ‘Var’, CalculateStatic())
        setattr ( Foo, ‘Step’, CalculateStep())

    Foo.Var += Foo. Step
    print(‘Value of Var : ‘, Foo.Var)

如果Python具有“ Marcro预处理”功能,那就更好了。

答案 28 :(得分:0)

我编写了一个使用静态变量的简单函数:

def Static():
    ### get the func object by which Static() is called.
    from inspect import currentframe, getframeinfo
    caller = currentframe().f_back
    func_name = getframeinfo(caller)[2]
    # print(func_name)
    caller = caller.f_back
    func = caller.f_locals.get(
        func_name, caller.f_globals.get(
            func_name
        )
    )
    
    class StaticVars:
        def has(self, varName):
            return hasattr(self, varName)
        def declare(self, varName, value):
            if not self.has(varName):
                setattr(self, varName, value)

    if hasattr(func, "staticVars"):
        return func.staticVars
    else:
        # add an attribute to func
        func.staticVars = StaticVars()
        return func.staticVars

使用方法:

def myfunc(arg):
    if Static().has('test1'):
        Static().test += 1
    else:
        Static().test = 1
    print(Static().test)

    # declare() only takes effect in the first time for each static variable.
    Static().declare('test2', 1)
    print(Static().test2)
    Static().test2 += 1