推力矢量距离计算

时间:2015-01-07 16:26:26

标签: c++ thrust

考虑以下数据集和质心。有7个人和两个手段,每个都有8个维度。它们按行主要顺序存储。

short dim = 8;
float centroids[] = {
    0.223, 0.002, 0.223, 0.412, 0.334, 0.532, 0.244, 0.612, 
    0.742, 0.812, 0.817, 0.353, 0.325, 0.452, 0.837, 0.441
};   
float data[] = {
    0.314, 0.504, 0.030, 0.215, 0.647, 0.045, 0.443, 0.325,
    0.731, 0.354, 0.696, 0.604, 0.954, 0.673, 0.625, 0.744, 
    0.615, 0.936, 0.045, 0.779, 0.169, 0.589, 0.303, 0.869, 
    0.275, 0.406, 0.003, 0.763, 0.471, 0.748, 0.230, 0.769, 
    0.903, 0.489, 0.135, 0.599, 0.094, 0.088, 0.272, 0.719, 
    0.112, 0.448, 0.809, 0.157, 0.227, 0.978, 0.747, 0.530, 
    0.908, 0.121, 0.321, 0.911, 0.884, 0.792, 0.658, 0.114
};

我想计算每个欧氏距离。 c1 - d1,c1 - d2 .... 在CPU上,我会这样做:

float dist = 0.0, dist_sqrt;
for(int i = 0; i < 2; i++)
    for(int j = 0; j < 7; j++)
    { 
        float dist_sum = 0.0;
        for(int k = 0; k < dim; k++)
        {
            dist = centroids[i * dim + k] - data[j * dim + k];
            dist_sum += dist * dist;
        }
        dist_sqrt = sqrt(dist_sum);
        // do something with the distance
        std::cout << dist_sqrt << std::endl;

    }

THRUST中是否有内置的矢量距离计算解决方案?

1 个答案:

答案 0 :(得分:3)

它可以在推力中完成。解释将如何参与,代码相当密集。

开始时的关键观察是核心操作可以通过转换后的减少来完成。推力变换操作用于执行向量的逐元素减法(个体质心)和每个结果的平方,并且减少将结果加在一起以产生欧氏距离的平方。此操作的起点是thrust::reduce_by_key,但它可以将数据正确地呈现给reduce_by_key

最终结果是通过从上面得到每个结果的平方根得出的,我们可以使用普通的thrust::transform

以上是完成所有工作的仅有2行推力代码的概述。但是,第一行具有相当大的复杂性。为了利用并行性,我采用的方法是按顺序虚拟“布置”必要的向量,以呈现给reduce_by_key。举一个简单的例子,假设我们有2个质心和4个个体,并假设我们的维度是2。

centroid 0: C00 C01
centroid 1: C10 C11
individ  0: I00 I01
individ  1: I10 I11
individ  2: I20 I21
individ  3: I30 I31

我们可以“布置”这样的载体:

 C00 C01 C00 C01 C00 C01 C00 C01 C10 C11 C10 C11 C10 C11 C10 C11
 I00 I01 I10 I11 I20 I21 I30 I31 I00 I01 I10 I11 I20 I21 I30 I31

为方便reduce_by_key,我们还需要生成关键值来描绘向量:

   0   0   1   1   0   0   1   1   0   0   1   1   0   0   1   1

以上数据“布局”数据集可能非常大,我们不希望产生存储和检索成本,因此我们将使用推力集合{{3来“生成”这些“动态” }}。这是事情变得非常密集的地方。考虑到上述策略,我们将使用fancy iterators来完成工作。我们将创建一个提供给transform_iterator的自定义仿函数,以对IC向量进行减法(和平方),这些向量将为此目的压缩在一起。将使用具有其他自定义索引创建仿函数的置换迭代器动态创建向量的“布局”,以帮助IC中的每个复制模式。

因此,从“由内而外”工作,步骤顺序如下:

  1. Idata)和Ccentr)使用counting_iteratortransform_iterator内的自定义索引编写器结合使用{ {1}}生成我们需要的索引序列。

  2. 使用在步骤1中创建的索引序列以及基本IC向量,通过permutation_iterator(每个已放置一个)虚拟“布置”向量out vector)。

  3. 将2个“布局”虚拟IC向量压缩在一起,以创建<float, float>元组向量(虚拟)。

  4. 从第3步中获取zip_iterator,并在(I-C)^2

  5. 中与自定义距离计算仿函数(transform_iterator)结合使用
  6. 使用另一个transform_iterator,将counting_iterator与自定义键生成函数组合,以生成键序列(虚拟)

  7. 将步骤4和5中的迭代器传递给reduce_by_key作为要减少的输入(键,值)。 reduce_by_key的输出向量也是键和值。我们不需要密钥,因此我们将使用discard_iterator转储这些密钥。我们将保存的值。

  8. 以上步骤均在一行推力代码中完成。

    这是一个说明上述代码的代码:

    #include <iostream>
    #include <thrust/device_vector.h>
    #include <thrust/host_vector.h>
    #include <thrust/reduce.h>
    #include <thrust/iterator/transform_iterator.h>
    #include <thrust/iterator/counting_iterator.h>
    #include <thrust/iterator/permutation_iterator.h>
    #include <thrust/iterator/zip_iterator.h>
    #include <thrust/iterator/discard_iterator.h>
    #include <thrust/copy.h>
    #include <math.h>
    
    #include <time.h>
    #include <sys/time.h>
    #include <stdlib.h>
    
    #define MAX_DATA 100000000
    #define MAX_CENT 5000
    #define TOL 0.001
    
    unsigned long long dtime_usec(unsigned long long prev){
    #define USECPSEC 1000000ULL
      timeval tv1;
      gettimeofday(&tv1,0);
      return ((tv1.tv_sec * USECPSEC)+tv1.tv_usec) - prev;
    }
    
    unsigned verify(float *d1, float *d2, int len){
      unsigned pass = 1;
      for (int i = 0; i < len; i++)
        if (fabsf(d1[i] - d2[i]) > TOL){
          std::cout << "mismatch at:  " << i << " val1: " << d1[i] << " val2: " << d2[i] << std::endl;
          pass = 0;
          break;}
      return pass;
    }
    void eucl_dist_cpu(const float *centroids, const float *data, float *rdist, int num_centroids, int dim, int num_data, int print){
    
      int out_idx = 0;
      float dist, dist_sqrt;
      for(int i = 0; i < num_centroids; i++)
        for(int j = 0; j < num_data; j++)
        {
            float dist_sum = 0.0;
            for(int k = 0; k < dim; k++)
            {
                dist = centroids[i * dim + k] - data[j * dim + k];
                dist_sum += dist * dist;
            }
            dist_sqrt = sqrt(dist_sum);
            // do something with the distance
            rdist[out_idx++] = dist_sqrt;
            if (print) std::cout << dist_sqrt << ", ";
    
        }
        if (print) std::cout << std::endl;
    }
    
    
    struct dkeygen : public thrust::unary_function<int, int>
    {
      int dim;
      int numd;
    
      dkeygen(const int _dim, const int _numd) : dim(_dim), numd(_numd) {};
    
      __host__ __device__ int operator()(const int val) const {
        return (val/dim);
        }
    };
    
    typedef thrust::tuple<float, float> mytuple;
    struct my_dist : public thrust::unary_function<mytuple, float>
    {
      __host__ __device__ float operator()(const mytuple &my_tuple) const {
        float temp = thrust::get<0>(my_tuple) - thrust::get<1>(my_tuple);
        return temp*temp;
      }
    };
    
    
    struct d_idx : public thrust::unary_function<int, int>
    {
      int dim;
      int numd;
    
      d_idx(int _dim, int _numd) : dim(_dim), numd(_numd) {};
    
      __host__ __device__ int operator()(const int val) const {
        return (val % (dim*numd));
        }
    };
    
    struct c_idx : public thrust::unary_function<int, int>
    {
      int dim;
      int numd;
    
      c_idx(int _dim, int _numd) : dim(_dim), numd(_numd) {};
    
      __host__ __device__ int operator()(const int val) const {
        return (val % dim) + (dim * (val/(dim*numd)));
        }
    };
    
    struct my_sqrt : public thrust::unary_function<float, float>
    {
      __host__ __device__ float operator()(const float val) const {
        return sqrtf(val);
      }
    };
    
    
    unsigned long long eucl_dist_thrust(thrust::host_vector<float> &centroids, thrust::host_vector<float> &data, thrust::host_vector<float> &dist, int num_centroids, int dim, int num_data, int print){
    
      thrust::device_vector<float> d_data = data;
      thrust::device_vector<float> d_centr = centroids;
      thrust::device_vector<float> values_out(num_centroids*num_data);
    
      unsigned long long compute_time = dtime_usec(0);
      thrust::reduce_by_key(thrust::make_transform_iterator(thrust::make_counting_iterator<int>(0), dkeygen(dim, num_data)), thrust::make_transform_iterator(thrust::make_counting_iterator<int>(dim*num_data*num_centroids), dkeygen(dim, num_data)),thrust::make_transform_iterator(thrust::make_zip_iterator(thrust::make_tuple(thrust::make_permutation_iterator(d_centr.begin(), thrust::make_transform_iterator(thrust::make_counting_iterator<int>(0), c_idx(dim, num_data))), thrust::make_permutation_iterator(d_data.begin(), thrust::make_transform_iterator(thrust::make_counting_iterator<int>(0), d_idx(dim, num_data))))), my_dist()), thrust::make_discard_iterator(), values_out.begin());
      thrust::transform(values_out.begin(), values_out.end(), values_out.begin(), my_sqrt());
      cudaDeviceSynchronize();
      compute_time = dtime_usec(compute_time);
    
      if (print){
        thrust::copy(values_out.begin(), values_out.end(), std::ostream_iterator<float>(std::cout, ", "));
        std::cout << std::endl;
        }
      thrust::copy(values_out.begin(), values_out.end(), dist.begin());
      return compute_time;
    }
    
    
    int main(int argc, char *argv[]){
    
      int dim = 8;
      int num_centroids = 2;
      float centroids[] = {
        0.223, 0.002, 0.223, 0.412, 0.334, 0.532, 0.244, 0.612,
        0.742, 0.812, 0.817, 0.353, 0.325, 0.452, 0.837, 0.441
      };
      int num_data = 8;
      float data[] = {
        0.314, 0.504, 0.030, 0.215, 0.647, 0.045, 0.443, 0.325,
        0.731, 0.354, 0.696, 0.604, 0.954, 0.673, 0.625, 0.744,
        0.615, 0.936, 0.045, 0.779, 0.169, 0.589, 0.303, 0.869,
        0.275, 0.406, 0.003, 0.763, 0.471, 0.748, 0.230, 0.769,
        0.903, 0.489, 0.135, 0.599, 0.094, 0.088, 0.272, 0.719,
        0.112, 0.448, 0.809, 0.157, 0.227, 0.978, 0.747, 0.530,
        0.908, 0.121, 0.321, 0.911, 0.884, 0.792, 0.658, 0.114,
        0.721, 0.555, 0.979, 0.412, 0.007, 0.501, 0.844, 0.234
      };
      std::cout << "cpu results: " << std::endl;
      float dist[num_data*num_centroids];
      eucl_dist_cpu(centroids, data, dist, num_centroids, dim, num_data, 1);
    
      thrust::host_vector<float> h_data(data, data + (sizeof(data)/sizeof(float)));
      thrust::host_vector<float> h_centr(centroids, centroids + (sizeof(centroids)/sizeof(float)));
      thrust::host_vector<float> h_dist(num_centroids*num_data);
    
      std::cout << "gpu results: " << std::endl;
      eucl_dist_thrust(h_centr, h_data, h_dist, num_centroids, dim, num_data, 1);
    
      float *data2, *centroids2, *dist2;
      num_centroids = 10;
      num_data = 1000000;
    
      if (argc > 2) {
        num_centroids = atoi(argv[1]);
        num_data = atoi(argv[2]);
        if ((num_centroids < 1) || (num_centroids > MAX_CENT)) {std::cout << "Num centroids out of range" << std::endl; return 1;}
        if ((num_data < 1) || (num_data > MAX_DATA)) {std::cout << "Num data out of range" << std::endl; return 1;}
        if (num_data * dim * num_centroids > 2000000000) {std::cout << "data set out of range" << std::endl; return 1;}}
      std::cout << "Num Data: " << num_data << std::endl;
      std::cout << "Num Cent: " << num_centroids << std::endl;
      std::cout << "result size: " << ((num_data*num_centroids*4)/1048576) << " Mbytes" << std::endl;
      data2 = new float[dim*num_data];
      centroids2 = new float[dim*num_centroids];
      dist2 = new float[num_data*num_centroids];
      for (int i = 0; i < dim*num_data; i++) data2[i] = rand()/(float)RAND_MAX;
      for (int i = 0; i < dim*num_centroids; i++) centroids2[i] = rand()/(float)RAND_MAX;
      unsigned long long dtime = dtime_usec(0);
      eucl_dist_cpu(centroids2, data2, dist2, num_centroids, dim, num_data, 0);
      dtime = dtime_usec(dtime);
      std::cout << "cpu time: " << dtime/(float)USECPSEC << "s" << std::endl;
      thrust::host_vector<float> h_data2(data2, data2 + (dim*num_data));
      thrust::host_vector<float> h_centr2(centroids2, centroids2 + (dim*num_centroids));
      thrust::host_vector<float> h_dist2(num_data*num_centroids);
      dtime = dtime_usec(0);
      unsigned long long ctime = eucl_dist_thrust(h_centr2, h_data2, h_dist2, num_centroids, dim, num_data, 0);
      dtime = dtime_usec(dtime);
      std::cout << "gpu total time: " << dtime/(float)USECPSEC << "s, gpu compute time: " << ctime/(float)USECPSEC << "s" << std::endl;
      if (!verify(dist2, &(h_dist2[0]), num_data*num_centroids)) {std::cout << "Verification failure." << std::endl; return 1;}
      std::cout << "Success!" << std::endl;
    
      return 0;
    
    }
    

    注意:

    1. 代码设置为执行2次传递,使用与您的数据集类似的短传递,使用打印输出进行目视检查。然后可以通过命令行大小参数(质心数,然后是个体数)输入更大的数据集,用于基准比较和结果验证。

    2. 与我在评论中所说的相反,推力代码的运行速度仅比天真的单线程CPU代码快25%。您的里程可能会有所不同。

    3. 这只是考虑处理它的一种方式。我有其他的想法,但没有足够的时间来充实它们。

    4. 数据集可能会变得相当大。现在的代码仅限于dimension*number_of_centroids*number_of_individuals的乘积小于20亿的数据集。但是,当你接近这个数字时,你需要一个GPU和CPU都有几GB的内存。我简要地探讨了更大的数据集大小。在各个地方需要进行一些代码更改以从例如intunsigned long long等。但我没有提供,因为我仍在调查该代码的问题。

    5. 对于另一个非推力相关的GPU计算欧氏距离的看法,您可能会对thrust::reduce_by_key感兴趣。如果你遵循那里所做的优化顺序,它可能会对如何改进这个推力代码或者如何使用另一个非推力实现提供一些启示。

    6. 抱歉,我无法提高性能。