这似乎是this question中lambda的情况所解决的。但那个是2011年的答案,我正在寻找一个普遍的案例:lambdas,常规函数和函子。并且,如果可能的话,通过最现代的c ++语言添加。 (注意:g++ -std=c++1y test.cpp
)。
所以,给定一个函数(或一个lambda),我试图找出它的返回类型是什么。例如,声明一个变量(简化的情况)。
using namespace std;
template<typename F>
void test (F h) {
// any of the following should be equivalent to int a; int b; int c;
decltype(h) a; // <<<<< wrong
result_of(h) b; // <<<<<< wrong
result_of<decltype(h)> c; // <<<<<< wrong
}
int a_function (int i) {
return 2*i;
}
int main () {
test (a_function);
}
感谢。
答案 0 :(得分:6)
std::result_of<h(int)>::type a;
(取自here。)
答案 1 :(得分:5)
假设:
decltype()
和std::result_of<>
都不是一个选项。operator()
。然后你可以使用下面的特性来推断任何仿函数对象的返回类型:
template <typename F>
struct return_type_impl;
template <typename R, typename... Args>
struct return_type_impl<R(Args...)> { using type = R; };
template <typename R, typename... Args>
struct return_type_impl<R(Args..., ...)> { using type = R; };
template <typename R, typename... Args>
struct return_type_impl<R(*)(Args...)> { using type = R; };
template <typename R, typename... Args>
struct return_type_impl<R(*)(Args..., ...)> { using type = R; };
template <typename R, typename... Args>
struct return_type_impl<R(&)(Args...)> { using type = R; };
template <typename R, typename... Args>
struct return_type_impl<R(&)(Args..., ...)> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...)> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...)> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) &> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) &> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) &&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) &&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) const> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) const> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) const&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) const&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) const&&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) const&&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) volatile> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) volatile> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) volatile&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) volatile&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) volatile&&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) volatile&&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) const volatile> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) const volatile> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) const volatile&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) const volatile&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args...) const volatile&&> { using type = R; };
template <typename R, typename C, typename... Args>
struct return_type_impl<R(C::*)(Args..., ...) const volatile&&> { using type = R; };
template <typename T, typename = void>
struct return_type
: return_type_impl<T> {};
template <typename T>
struct return_type<T, decltype(void(&T::operator()))>
: return_type_impl<decltype(&T::operator())> {};
template <typename T>
using return_type_t = typename return_type<T>::type;
试验:
#include <type_traits>
template <typename F>
void test(F h)
{
static_assert(std::is_same<return_type_t<F>, int>{}, "!");
return_type_t<F> i = 1;
}
int function(int i) { return 2*i; }
int c_varargs_function(...) { return 1; }
struct A
{
int mem_function(double, float) { return 1; }
};
int main()
{
// Function
test(function);
// C-style variadic function
test(c_varargs_function);
// Non-generic lambda
test([](int i) { return 2*i; });
// Member function
test(&A::mem_function);
}