在scikit-learn中可视化决策树

时间:2015-01-07 11:03:30

标签: python scikit-learn visualization decision-tree

我正在尝试使用Python中的scikit-learn设计一个简单的决策树(我在Windows操作系统上使用Anaconda的Ipython Notebook和Python 2.7.3)并将其可视化如下:

from pandas import read_csv, DataFrame
from sklearn import tree
from os import system

data = read_csv('D:/training.csv')
Y = data.Y
X = data.ix[:,"X0":"X33"]

dtree = tree.DecisionTreeClassifier(criterion = "entropy")
dtree = dtree.fit(X, Y)

dotfile = open("D:/dtree2.dot", 'w')
dotfile = tree.export_graphviz(dtree, out_file = dotfile, feature_names = X.columns)
dotfile.close()
system("dot -Tpng D:.dot -o D:/dtree2.png")

但是,我收到以下错误:

AttributeError: 'NoneType' object has no attribute 'close'

我使用以下博文作为参考:Blogpost link

以下stackoverflow问题对我来说似乎也不起作用:Question

有人可以帮助我了解如何在scikit-learn中显示决策树吗?

10 个答案:

答案 0 :(得分:25)

对于那些使用 jupyter 和sklearn(18.2+)的人来说,这是一个班轮你甚至不需要matplotlib。只有graphviz

的要求
pip install graphviz

比运行(根据问题X中的代码是pandas DataFrame)

from graphviz import Source
from sklearn import tree
Source( tree.export_graphviz(dtreg, out_file=None, feature_names=X.columns))

这将以SVG格式显示。上面的代码生成Graphviz的Source对象(source_code - 不可怕),它将直接在jupyter中呈现。

你可能会做的一些事情

在jupter中显示:

from IPython.display import SVG
graph = Source( tree.export_graphviz(dtreg, out_file=None, feature_names=X.columns))
SVG(graph.pipe(format='svg'))

另存为png:

graph = Source( tree.export_graphviz(dtreg, out_file=None, feature_names=X.columns))
graph.format = 'png'
graph.render('dtree_render',view=True)

获取png图像,保存并查看:

graph = Source( tree.export_graphviz(dtreg, out_file=None, feature_names=X.columns))
png_bytes = graph.pipe(format='png')
with open('dtree_pipe.png','wb') as f:
    f.write(png_bytes)

from IPython.display import Image
Image(png_bytes)

如果您打算使用该库,请访问examplesuserguide

的链接

答案 1 :(得分:21)

sklearn.tree.export_graphviz不会返回任何内容,因此默认情况下会返回None

通过执行dotfile = tree.export_graphviz(...),您会覆盖之前已分配给dotfile的打开文件对象,因此当您尝试关闭文件时会出现错误(因为它现在是None {1}})。

要修复它,请将代码更改为

...
dotfile = open("D:/dtree2.dot", 'w')
tree.export_graphviz(dtree, out_file = dotfile, feature_names = X.columns)
dotfile.close()
...

答案 2 :(得分:18)

如果像我一样,您在安装graphviz时遇到问题,可以通过

显示树
  1. 使用export_graphviz导出它,如前面的答案中所示
  2. 在文本编辑器中打开.dot文件
  3. 复制该段代码并将其粘贴@ webgraphviz.com

答案 3 :(得分:8)

或者,您可以尝试使用pydot从dot:

生成png文件
...
tree.export_graphviz(dtreg, out_file='tree.dot') #produces dot file

import pydot
dotfile = StringIO()
tree.export_graphviz(dtreg, out_file=dotfile)
pydot.graph_from_dot_data(dotfile.getvalue()).write_png("dtree2.png")
...

答案 4 :(得分:2)

您可以复制export_graphviz文件的内容,然后将其粘贴到MediaCodec.getOutputImage网站中。

您可以查看有关如何webgraphviz.com的文章以获取更多信息。

答案 5 :(得分:0)

如果您在直接获取源.dot时遇到问题,也可以像这样使用Source.from_file

from graphviz import Source
from sklearn import tree
tree.export_graphviz(dtreg, out_file='tree.dot', feature_names=X.columns)
Source.from_file('tree.dot')

答案 6 :(得分:0)

我复制并更改了部分代码,如下所示:

from pandas import read_csv, DataFrame
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from os import system

data = read_csv('D:/training.csv')
Y = data.Y
X = data.ix[:,"X0":"X33"]

dtree = tree.DecisionTreeClassifier(criterion = "entropy")
dtree = dtree.fit(X, Y)

确保拥有dtree后,这意味着上面的代码运行良好,然后添加以下代码以可视化决策树:

请记住先安装graphviz:pip安装graphviz

import graphviz 
from graphviz import Source
dot_data = tree.export_graphviz(dtree, out_file=None, feature_names=X.columns)
graph = graphviz.Source(dot_data) 
graph.render("name of file",view = True)

我尝试了数据,可视化效果很好,并且立即查看了pdf文件。

答案 7 :(得分:0)

以下内容也可以正常工作:

from sklearn.datasets import load_iris
iris = load_iris()

# Model (can also use single decision tree)
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=10)

# Train
model.fit(iris.data, iris.target)
# Extract single tree
estimator = model.estimators_[5]

from sklearn.tree import export_graphviz
# Export as dot file
export_graphviz(estimator, out_file='tree.dot', 
                feature_names = iris.feature_names,
                class_names = iris.target_names,
                rounded = True, proportion = False, 
                precision = 2, filled = True)

# Convert to png using system command (requires Graphviz)
from subprocess import call
call(['dot', '-Tpng', 'tree.dot', '-o', 'tree.png', '-Gdpi=600'])

# Display in jupyter notebook
from IPython.display import Image
Image(filename = 'tree.png')

enter image description here

您可以找到源here

答案 8 :(得分:0)

here创建pydotplus的简单方法(必须安装graphviz):

from IPython.display import Image  
from sklearn import tree
import pydotplus # installing pyparsing maybe needed

...

dot_data = tree.export_graphviz(best_model, out_file=None, feature_names = X.columns)
graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())

答案 9 :(得分:0)

Scikit learning最近引入了plot_tree方法来简化此操作(0.21版(2019年5月新增)。文档here

这是您需要的最低代码:

from sklearn import tree
plt.figure(figsize=(40,20))  # customize according to the size of your tree
_ = tree.plot_tree(your_model_name, feature_names = X.columns)
plt.show()

plot_tree支持一些参数来美化树。例如:

from sklearn import tree
plt.figure(figsize=(40,20))  
_ = tree.plot_tree(your_model_name, feature_names = X.columns, 
             filled=True, fontsize=6, rounded = True)
plt.show()

如果要将图片保存到文件,请在plt.show()之前添加以下行:

plt.savefig('filename.png')

如果您想以文本格式查看规则,请回答here。阅读起来更直观。