尝试使用反向传播神经网络进行多类分类。我找到this code并尝试调整它。它基于Machine Learning in Coursera from Andrew Ng的部分。
我不完全理解scipy.optimize.minimize
函数的实现。它在代码中只使用一次。它是否在迭代地更新网络的权重?我如何可视化(绘制)它的性能以确定它何时收敛?
使用此功能我可以调整哪些参数以获得更好的性能?我找到了here列表常用参数:
hidden_layer_size=25
reg_lambda=0
的情况?正规化参数,以避免过度拟合,对吗?maxiter=500
这是我的训练数据(目标类在最后一栏):
65535, 3670, 65535, 3885, -0.73, 1
65535, 3962, 65535, 3556, -0.72, 1
65535, 3573, 65535, 3529, -0.61, 1
3758, 3123, 4117, 3173, -0.21, 0
3906, 3119, 4288, 3135, -0.28, 0
3750, 3073, 4080, 3212, -0.26, 0
65535, 3458, 65535, 3330, -0.85, 2
65535, 3315, 65535, 3306, -0.87, 2
65535, 3950, 65535, 3613, -0.84, 2
65535, 32576, 65535, 19613, -0.35, 3
65535, 16657, 65535, 16618, -0.37, 3
65535, 16657, 65535, 16618, -0.32, 3
依赖关系是如此明显,我认为它应该如此容易分类......
但结果很糟糕。我的准确度为0.6到0.8。这绝对不适合我的申请。我知道我需要更多的数据,但是当我至少能够拟合训练数据时我会很高兴(不考虑潜在的过度拟合)
以下是代码:
import numpy as np
from scipy import optimize
from sklearn import cross_validation
from sklearn.metrics import accuracy_score
import math
class NN_1HL(object):
def __init__(self, reg_lambda=0, epsilon_init=0.12, hidden_layer_size=25, opti_method='TNC', maxiter=500):
self.reg_lambda = reg_lambda
self.epsilon_init = epsilon_init
self.hidden_layer_size = hidden_layer_size
self.activation_func = self.sigmoid
self.activation_func_prime = self.sigmoid_prime
self.method = opti_method
self.maxiter = maxiter
def sigmoid(self, z):
return 1 / (1 + np.exp(-z))
def sigmoid_prime(self, z):
sig = self.sigmoid(z)
return sig * (1 - sig)
def sumsqr(self, a):
return np.sum(a ** 2)
def rand_init(self, l_in, l_out):
self.epsilon_init = (math.sqrt(6))/(math.sqrt(l_in + l_out))
return np.random.rand(l_out, l_in + 1) * 2 * self.epsilon_init - self.epsilon_init
def pack_thetas(self, t1, t2):
return np.concatenate((t1.reshape(-1), t2.reshape(-1)))
def unpack_thetas(self, thetas, input_layer_size, hidden_layer_size, num_labels):
t1_start = 0
t1_end = hidden_layer_size * (input_layer_size + 1)
t1 = thetas[t1_start:t1_end].reshape((hidden_layer_size, input_layer_size + 1))
t2 = thetas[t1_end:].reshape((num_labels, hidden_layer_size + 1))
return t1, t2
def _forward(self, X, t1, t2):
m = X.shape[0]
ones = None
if len(X.shape) == 1:
ones = np.array(1).reshape(1,)
else:
ones = np.ones(m).reshape(m,1)
# Input layer
a1 = np.hstack((ones, X))
# Hidden Layer
z2 = np.dot(t1, a1.T)
a2 = self.activation_func(z2)
a2 = np.hstack((ones, a2.T))
# Output layer
z3 = np.dot(t2, a2.T)
a3 = self.activation_func(z3)
return a1, z2, a2, z3, a3
def function(self, thetas, input_layer_size, hidden_layer_size, num_labels, X, y, reg_lambda):
t1, t2 = self.unpack_thetas(thetas, input_layer_size, hidden_layer_size, num_labels)
m = X.shape[0]
Y = np.eye(num_labels)[y]
_, _, _, _, h = self._forward(X, t1, t2)
costPositive = -Y * np.log(h).T
costNegative = (1 - Y) * np.log(1 - h).T
cost = costPositive - costNegative
J = np.sum(cost) / m
if reg_lambda != 0:
t1f = t1[:, 1:]
t2f = t2[:, 1:]
reg = (self.reg_lambda / (2 * m)) * (self.sumsqr(t1f) + self.sumsqr(t2f))
J = J + reg
return J
def function_prime(self, thetas, input_layer_size, hidden_layer_size, num_labels, X, y, reg_lambda):
t1, t2 = self.unpack_thetas(thetas, input_layer_size, hidden_layer_size, num_labels)
m = X.shape[0]
t1f = t1[:, 1:]
t2f = t2[:, 1:]
Y = np.eye(num_labels)[y]
Delta1, Delta2 = 0, 0
for i, row in enumerate(X):
a1, z2, a2, z3, a3 = self._forward(row, t1, t2)
# Backprop
d3 = a3 - Y[i, :].T
d2 = np.dot(t2f.T, d3) * self.activation_func_prime(z2)
Delta2 += np.dot(d3[np.newaxis].T, a2[np.newaxis])
Delta1 += np.dot(d2[np.newaxis].T, a1[np.newaxis])
Theta1_grad = (1 / m) * Delta1
Theta2_grad = (1 / m) * Delta2
if reg_lambda != 0:
Theta1_grad[:, 1:] = Theta1_grad[:, 1:] + (reg_lambda / m) * t1f
Theta2_grad[:, 1:] = Theta2_grad[:, 1:] + (reg_lambda / m) * t2f
return self.pack_thetas(Theta1_grad, Theta2_grad)
def fit(self, X, y):
num_features = X.shape[0]
input_layer_size = X.shape[1]
num_labels = len(set(y))
theta1_0 = self.rand_init(input_layer_size, self.hidden_layer_size)
theta2_0 = self.rand_init(self.hidden_layer_size, num_labels)
thetas0 = self.pack_thetas(theta1_0, theta2_0)
options = {'maxiter': self.maxiter}
_res = optimize.minimize(self.function, thetas0, jac=self.function_prime, method=self.method,
args=(input_layer_size, self.hidden_layer_size, num_labels, X, y, 0), options=options)
self.t1, self.t2 = self.unpack_thetas(_res.x, input_layer_size, self.hidden_layer_size, num_labels)
np.savetxt("weights_t1.txt", self.t1, newline="\n")
np.savetxt("weights_t2.txt", self.t2, newline="\n")
def predict(self, X):
return self.predict_proba(X).argmax(0)
def predict_proba(self, X):
_, _, _, _, h = self._forward(X, self.t1, self.t2)
return h
##################
# IR data #
##################
values = np.loadtxt('infrared_data.txt', delimiter=', ', usecols=[0,1,2,3,4])
targets = np.loadtxt('infrared_data.txt', delimiter=', ', dtype=(int), usecols=[5])
X_train, X_test, y_train, y_test = cross_validation.train_test_split(values, targets, test_size=0.4)
nn = NN_1HL()
nn.fit(values, targets)
print("Accuracy of classification: "+str(accuracy_score(y_test, nn.predict(X_test))))
答案 0 :(得分:0)
在给定代码中scipy.optimize.minimize
迭代地最小化函数给定它的导数(雅可比矩阵)。根据文档,use可以为每次迭代后调用的函数指定callback
参数 - 这可以让你测量性能,虽然我不确定它是否会让你停止优化过程。
您列出的所有参数都是超参数,很难直接优化它们:
隐藏层中的神经元数量是一个离散值参数,因此,不能通过梯度技术进行优化。此外,它会影响NeuralNet架构,因此您无法在训练网络时对其进行优化。但是,您可以使用一些更高级别的例程来搜索可能的选项,例如使用交叉验证的详尽网格搜索(例如查看GridSearchCV)或其他用于超参数搜索的工具({{3 }},hyperopt,spearmint等。)
对于大多数可用的优化方法, 学习率似乎无法自定义。但是,实际上,梯度下降的学习率只是牛顿的方法,而Hessian"近似" by 1 / eta I
- 在主要对角线上具有反向学习率的对角矩阵。因此,您可以使用此启发式方法尝试基于黑森州的方法。
Momentum 与正规化完全无关。它是一种优化技术,因为您使用scipy进行优化,所以无法使用。