在pandas中,如果我在dataframe(transdf)中有交易数据,如下所示:
OrderId, ShippmentSegmentsDays
1 , 1
2 , 3
3 , 4
4 , 10
我还有另一个指定间隔的df(segmentdf):
ShippmentSegmentDaysStart , ShippmentSegmentDaysEnd , ShippmentSegment
-9999999 , 0 , 'On-Time'
0 , 1 , '1 day late'
1 , 2 , '2 days late'
2 , 3 , '3 days late'
3 , 9999999 , '>3 days late'
我需要添加一个基于“ShippmentSegmentsDays”和“ShippmentSegment”的列。所以基本上对于“transdf”中的每一行,我需要检查“ShippmentSegmentsDays”值,其间隔可以从“segmentdf”中找到
因此,“transdf”应如下所示:
OrderId, ShippmentSegmentsDays, ShippmentSegment
1 , 1 , '1 day late'
2 , 0 , 'On-Time'
3 , 4 , '>3 days late'
4 , 10 , '>3 days late'
有人可以给我一个如何处理这种情况的建议吗?
谢谢! 斯蒂芬
答案 0 :(得分:2)
如果您知道pandas.apply(args)
中设置的规则是静态的且不会更改,则可以使用transdf
将功能应用于segmentdf
数据框中的每一行。也许以下代码段可能对您有所帮助。我没有对此进行过测试,所以请小心谨慎,但我认为它应该让你开始朝着正确的方向前进。
# create a series of just the data from the 'ShippmentSegmentDays' column
seg_days_df = trends['ShippmentSegmentDays']
# Create a new column, 'ShippmentSegment', in 'transdf' data frame by calling
# our utility function on the series created above.
transdf['ShippmentSegment'] = seg_days_df.apply(calc_ship_segment, axis=1)
# Utility function to define the rules set in the 'segmentdf' data frame
def calc_ship_segment(num):
if not num:
return 'On Time'
elif num == 1:
return '1 Day Late'
elif num == 2:
return '2 Days Late'
elif num == 3:
return '3 Days Late'
else:
return '>3 Days Late'
答案 1 :(得分:1)
旧帖子,但我遇到了同样的问题。熊猫提供了一个Interval function对我有用的东西。