由于已知CPU是管道,如果命令序列彼此独立,它的工作效率最高 - 这称为ILP(指令级并行):http://en.wikipedia.org/wiki/Instruction-level_parallelism
但是有没有一个真正有效的例子,它显示了ILP的好处,至少是同步的例子,对于CPU x86_64(但对于cmp
/ jne
的相同数量< /强>)?
我将编写以下示例 - 添加数组的所有元素,但它没有显示ILP的任何优点:http://ideone.com/fork/poWfsm
for(i = 0; i < arr_size; i += 8) {
result += arr[i+0] + arr[i+1] +
arr[i+2] + arr[i+3] +
arr[i+4] + arr[i+5] +
arr[i+6] + arr[i+7];
}
register unsigned int v0, v1, v2, v3;
v0 = v1 = v2 = v3 = 0;
for(i = 0; i < arr_size; i += 8) {
v0 += arr[i+0] + arr[i+1];
v1 += arr[i+2] + arr[i+3];
v2 += arr[i+4] + arr[i+5];
v3 += arr[i+6] + arr[i+7];
}
result = v0+v1+v2+v3;
结果:
seq:0.100000 sec,res:1000000000,ipl:0.110000 sec,更快 0.909091 X,res:1000000000
seq:0.100000 sec,res:1000000000,ipl:0.100000 sec,更快 1.000000 X,res:1000000000
seq:0.100000 sec,res:1000000000,ipl:0.110000 sec,更快 0.909091 X,res:1000000000
seq:0.100000 sec,res:1000000000,ipl:0.100000 sec,更快 1.000000 X,res:1000000000
seq:0.110000秒,res:1000000000,ipl:0.110000秒,更快 1.000000 X,res:1000000000
seq:0.100000 sec,res:1000000000,ipl:0.110000 sec,更快 0.909091 X,res:1000000000
seq:0.100000 sec,res:1000000000,ipl:0.110000 sec,更快 0.909091 X,res:1000000000
seq:0.110000 sec,res:1000000000,ipl:0.100000 sec,更快 1.100000 X,res:1000000000
seq:0.110000 sec,res:1000000000,ipl:0.100000 sec,更快 1.100000 X,res:1000000000
seq:0.110000秒,res:1000000000,ipl:0.120000秒,更快 0.916667 X,res:1000000000
更快的AVG: 0.975303
ILP甚至比Sequential慢一点。
C代码:http://ideone.com/fork/poWfsm
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
int main() {
// create and init array
const size_t arr_size = 100000000;
unsigned int *arr = (unsigned int*) malloc(arr_size * sizeof(unsigned int));
size_t i, k;
for(i = 0; i < arr_size; ++i)
arr[i] = 10;
unsigned int result = 0;
clock_t start, end;
const int c_iterations = 10; // iterations of experiment
float faster_avg = 0;
// -----------------------------------------------------------------
for(k = 0; k < c_iterations; ++k) {
result = 0;
// Sequential
start = clock();
for(i = 0; i < arr_size; i += 8) {
result += arr[i+0] + arr[i+1] +
arr[i+2] + arr[i+3] +
arr[i+4] + arr[i+5] +
arr[i+6] + arr[i+7];
}
end = clock();
const float c_time_seq = (float)(end - start)/CLOCKS_PER_SEC;
printf("seq: %f sec, res: %u, ", c_time_seq, result);
// -----------------------------------------------------------------
result = 0;
// IPL-optimization
start = clock();
register unsigned int v0, v1, v2, v3;
v0 = v1 = v2 = v3 = 0;
for(i = 0; i < arr_size; i += 8) {
v0 += arr[i+0] + arr[i+1];
v1 += arr[i+2] + arr[i+3];
v2 += arr[i+4] + arr[i+5];
v3 += arr[i+6] + arr[i+7];
}
result = v0+v1+v2+v3;
end = clock();
const float c_time_ipl = (float)(end - start)/CLOCKS_PER_SEC;
const float c_faster = c_time_seq/c_time_ipl;
printf("ipl: %f sec, faster %f X, res: %u \n", c_time_ipl, c_faster, result);
faster_avg += c_faster;
}
faster_avg = faster_avg/c_iterations;
printf("faster AVG: %f \n", faster_avg);
return 0;
}
更新
for (i = 0; i < arr_size; i += 8) {
result += arr[i + 0] + arr[i + 1] +
arr[i + 2] + arr[i + 3] +
arr[i + 4] + arr[i + 5] +
arr[i + 6] + arr[i + 7];
}
000000013F131080 mov ecx,dword ptr [rdx-18h]
000000013F131083 lea rdx,[rdx+20h]
000000013F131087 add ecx,dword ptr [rdx-34h]
000000013F13108A add ecx,dword ptr [rdx-30h]
000000013F13108D add ecx,dword ptr [rdx-2Ch]
000000013F131090 add ecx,dword ptr [rdx-28h]
000000013F131093 add ecx,dword ptr [rdx-24h]
000000013F131096 add ecx,dword ptr [rdx-1Ch]
000000013F131099 add ecx,dword ptr [rdx-20h]
000000013F13109C add edi,ecx
000000013F13109E dec r8
000000013F1310A1 jne main+80h (013F131080h)
for (i = 0; i < arr_size; i += 8) {
v0 += arr[i + 0] + arr[i + 1];
000000013F1310F0 mov ecx,dword ptr [rdx-0Ch]
v1 += arr[i + 2] + arr[i + 3];
v2 += arr[i + 4] + arr[i + 5];
000000013F1310F3 mov eax,dword ptr [rdx+8]
000000013F1310F6 lea rdx,[rdx+20h]
000000013F1310FA add ecx,dword ptr [rdx-28h]
000000013F1310FD add eax,dword ptr [rdx-1Ch]
000000013F131100 add ebp,ecx
000000013F131102 mov ecx,dword ptr [rdx-24h]
000000013F131105 add ebx,eax
000000013F131107 add ecx,dword ptr [rdx-20h]
v3 += arr[i + 6] + arr[i + 7];
000000013F13110A mov eax,dword ptr [rdx-10h]
v3 += arr[i + 6] + arr[i + 7];
000000013F13110D add eax,dword ptr [rdx-14h]
000000013F131110 add esi,ecx
000000013F131112 add edi,eax
000000013F131114 dec r8
000000013F131117 jne main+0F0h (013F1310F0h)
}
result = v0 + v1 + v2 + v3;
编译器命令行:
/GS /GL /W3 /Gy /Zc:wchar_t /Zi /Gm- /O2 /Ob2 /sdl /Fd"x64\Release\vc120.pdb" /fp:precise /D "_MBCS" /errorReport:prompt /WX- /Zc:forScope /Gd /Oi /MT /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Ot /Fp"x64\Release\IPL_reduce_test.pch"
答案的补充说明:
这个简单的例子展示了Unroll-loop和Unroll-loop + ILP之间ILP对50000000双元素数组的好处:http://ideone.com/LgTP6b
更快的AVG:1.152778
xmm0
然后添加到结果中xmm6
,即可以使用Register renaming:result += arr[i + 0] + arr[i + 1] + arr[i + 2] + arr[i + 3] +
arr[i + 4] + arr[i + 5] + arr[i + 6] + arr[i + 7];
000000013FBA1090 movsd xmm0,mmword ptr [rcx-10h]
000000013FBA1095 add rcx,40h
000000013FBA1099 addsd xmm0,mmword ptr [rcx-48h]
000000013FBA109E addsd xmm0,mmword ptr [rcx-40h]
000000013FBA10A3 addsd xmm0,mmword ptr [rcx-38h]
000000013FBA10A8 addsd xmm0,mmword ptr [rcx-30h]
000000013FBA10AD addsd xmm0,mmword ptr [rcx-28h]
000000013FBA10B2 addsd xmm0,mmword ptr [rcx-20h]
000000013FBA10B7 addsd xmm0,mmword ptr [rcx-18h]
000000013FBA10BC addsd xmm6,xmm0
000000013FBA10C0 dec rdx
000000013FBA10C3 jne main+90h (013FBA1090h)
xmm6
,即不能使用Register renaming: result += arr[i + 0];
000000013FFC1090 addsd xmm6,mmword ptr [rcx-10h]
000000013FFC1095 add rcx,40h
result += arr[i + 1];
000000013FFC1099 addsd xmm6,mmword ptr [rcx-48h]
result += arr[i + 2];
000000013FFC109E addsd xmm6,mmword ptr [rcx-40h]
result += arr[i + 3];
000000013FFC10A3 addsd xmm6,mmword ptr [rcx-38h]
result += arr[i + 4];
000000013FFC10A8 addsd xmm6,mmword ptr [rcx-30h]
result += arr[i + 5];
000000013FFC10AD addsd xmm6,mmword ptr [rcx-28h]
result += arr[i + 6];
000000013FFC10B2 addsd xmm6,mmword ptr [rcx-20h]
result += arr[i + 7];
000000013FFC10B7 addsd xmm6,mmword ptr [rcx-18h]
000000013FFC10BC dec rdx
000000013FFC10BF jne main+90h (013FFC1090h)
答案 0 :(得分:15)
在大多数英特尔处理器上,进行浮点数添加需要3个周期。但如果它们是独立的,它可以维持1 /周期。
我们可以通过在关键路径上添加浮点数来轻松演示ILP。
<强>环境:强>
-O2
确保编译器不进行不安全的浮点优化。
#include <iostream>
using namespace std;
#include <time.h>
const int iterations = 1000000000;
double sequential(){
double a = 2.3;
double result = 0;
for (int c = 0; c < iterations; c += 4){
// Every add depends on the previous add. No ILP is possible.
result += a;
result += a;
result += a;
result += a;
}
return result;
}
double optimized(){
double a = 2.3;
double result0 = 0;
double result1 = 0;
double result2 = 0;
double result3 = 0;
for (int c = 0; c < iterations; c += 4){
// 4 independent adds. Up to 4 adds can be run in parallel.
result0 += a;
result1 += a;
result2 += a;
result3 += a;
}
return result0 + result1 + result2 + result3;
}
int main(){
clock_t start0 = clock();
double sum0 = sequential();
clock_t end0 = clock();
cout << "sum = " << sum0 << endl;
cout << "sequential time: " << (double)(end0 - start0) / CLOCKS_PER_SEC << endl;
clock_t start1 = clock();
double sum1 = optimized();
clock_t end1 = clock();
cout << "sum = " << sum1 << endl;
cout << "optimized time: " << (double)(end1 - start1) / CLOCKS_PER_SEC << endl;
}
<强>输出:强>
sum = 2.3e+09
sequential time: 0.948138
sum = 2.3e+09
optimized time: 0.317293
注意差异几乎是3倍。这是因为浮点数的3周期延迟和1周期吞吐量。
顺序版本的ILP非常少,因为所有浮点数都在关键路径上。 (每个add都需要等到上一次添加完成)展开的版本有4个独立的依赖链,最多有4个独立的添加 - 所有这些都可以并行运行。只需要3个就可以使处理器内核饱和。
答案 1 :(得分:4)
对于整数代码,也可以看到差异,例如
global cmp1
proc_frame cmp1
[endprolog]
mov ecx, -10000000
mov r8d, 1
xor eax, eax
_cmp1_loop:
add eax, r8d
add eax, r8d
add eax, r8d
add eax, r8d
add ecx, 1
jnz _cmp1_loop
ret
endproc_frame
global cmp2
proc_frame cmp2
[endprolog]
mov ecx, -10000000
mov r8d, 1
xor eax, eax
xor edx, edx
xor r9d, r9d
xor r10d, r10d
_cmp2_loop:
add eax, r8d
add edx, r8d
add r9d, r8d
add r10d, r8d
add ecx, 1
jnz _cmp2_loop
add r9d, r10d
add eax, edx
add eax, r9d
ret
endproc_frame
我的4770K的结果是第一个的TSC蜱约为3590万个,而第二个的豁免为1190万个(最短时间超过1k)。
在第一个中,eax
上的依赖链是每次迭代4个周期中最慢的。没有其他问题,ecx
上的依赖链更快,并且有足够的吞吐量来隐藏它和控制流。顺便提一下,35.9万个TSC滴答工作达到4000万个周期,因为TSC的基本时钟频率为3.5GHz,但最大涡轮增压为3.9GHz,3.9 / 3.5 * 35.9约为40个。
我在评论中提到的第二个版本(4个累加器,但使用[rsp]
来存储常量1)需要17.9,这使得每次迭代2个周期。这与内存负载的吞吐量相匹配,在Haswell上是2 /周期。 4个负载,所以2个周期。循环开销仍然可以隐藏。
上面发布的第二个每次迭代需要1.3333个周期。前四个添加可以转到端口0,1,5和6,add/jnz
融合对只能到端口6。将融合对放入p6离开3个端口4μs,因此1.3333个循环。