NVIDIA GPU是否支持无序执行?
我的第一个猜测是它们不包含如此昂贵的硬件。但是,在阅读CUDA progamming guide
时,指南建议使用指令级并行(ILP)来提高性能。
ILP不是支持乱序执行的硬件可以利用的功能吗?或者NVIDIA的ILP仅仅意味着编译器级别的指令重新排序,因此它的顺序在运行时仍然是固定的。换句话说,只是编译器和/或程序员必须以这样一种方式排列指令的顺序,即通过按顺序执行可以在运行时实现ILP?
答案 0 :(得分:6)
Pipelining是一种常见的ILP技术,肯定可以在NVidia的GPU上实现。我猜您同意流水线操作不依赖于无序执行。 此外,NVidia GPU具有多个来自计算能力2.0及更高版本(2或4)的warp调度程序。如果你的代码在线程中有2个(或更多)连续且独立的指令(或者编译器以某种方式重新排序),你也可以从调度程序中利用这个ILP。
这是一个很好解释的问题,关于2宽warp调度程序+流水线如何协同工作。 How do nVIDIA CC 2.1 GPU warp schedulers issue 2 instructions at a time for a warp?
同时查看Vasily Volkov关于GTC 2010的演讲。他通过实验了解了ILP如何改善CUDA代码的性能。 http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
就GPU上的乱序执行而言,我不这么认为。正如您所知,硬件指令重新排序,推测执行所有这些东西对于每个SM来说实施起来太昂贵了。并且线程级并行性可以填补缺少无序执行的空白。遇到真正的依赖关系时,其他一些warp可以启动并填充管道。
答案 1 :(得分:1)
以下代码报告了指令级并行(ILP)的示例。
示例中的__global__
函数只是在两个数组之间执行赋值。对于ILP=1
的情况,我们拥有与数组元素数N
一样多的线程,以便每个线程执行单个赋值。与此相反,对于ILP=2
的情况,我们有一些N/2
个线程,每个线程处理2
个元素。通常,对于ILP=k
的情况,我们有一些N/k
个主题,每个主题都处理k
元素。
除了代码之外,我还报告了在NVIDIA GT920M
(开普勒架构)上针对N
和ILP
的不同值执行的时序。可以看出:
N
值,已达到GT920M
卡最大值的内存带宽,即14.4GB/s
; N
,更改ILP
的值不会改变效果。关于第2点,我还在Maxwell上测试了相同的代码,并观察到相同的行为(性能与ILP
没有变化)。如果针对ILP
的效果发生变化,请参阅The efficiency and performance of ILP for the NVIDIA Kepler architecture报告对Fermi架构进行测试的答案。
记忆速度由以下公式计算:
(2.f * 4.f * N * numITER) / (1e9 * timeTotal * 1e-3)
,其中
4.f * N * numITER
是读或写的数量,
2.f * 4.f * N * numITER
是读写次数
timeTotal * 1e-3
是seconds
中的时间(timeTotal
中的ms
)。
代码
// --- GT920m - 14.4 GB/s
// http://gpuboss.com/gpus/GeForce-GTX-280M-vs-GeForce-920M
#include<stdio.h>
#include<iostream>
#include "Utilities.cuh"
#include "TimingGPU.cuh"
#define BLOCKSIZE 32
#define DEBUG
/****************************************/
/* INSTRUCTION LEVEL PARALLELISM KERNEL */
/****************************************/
__global__ void ILPKernel(const int * __restrict__ d_a, int * __restrict__ d_b, const int ILP, const int N) {
const int tid = threadIdx.x + blockIdx.x * blockDim.x * ILP;
if (tid >= N) return;
for (int j = 0; j < ILP; j++) d_b[tid + j * blockDim.x] = d_a[tid + j * blockDim.x];
}
/********/
/* MAIN */
/********/
int main() {
//const int N = 8192;
const int N = 524288 * 32;
//const int N = 1048576;
//const int N = 262144;
//const int N = 2048;
const int numITER = 100;
const int ILP = 16;
TimingGPU timerGPU;
int *h_a = (int *)malloc(N * sizeof(int));
int *h_b = (int *)malloc(N * sizeof(int));
for (int i = 0; i<N; i++) {
h_a[i] = 2;
h_b[i] = 1;
}
int *d_a; gpuErrchk(cudaMalloc(&d_a, N * sizeof(int)));
int *d_b; gpuErrchk(cudaMalloc(&d_b, N * sizeof(int)));
gpuErrchk(cudaMemcpy(d_a, h_a, N * sizeof(int), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_b, h_b, N * sizeof(int), cudaMemcpyHostToDevice));
/**************/
/* ILP KERNEL */
/**************/
float timeTotal = 0.f;
for (int k = 0; k < numITER; k++) {
timerGPU.StartCounter();
ILPKernel << <iDivUp(N / ILP, BLOCKSIZE), BLOCKSIZE >> >(d_a, d_b, ILP, N);
#ifdef DEBUG
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
timeTotal = timeTotal + timerGPU.GetCounter();
}
printf("Bandwidth = %f GB / s; Num blocks = %d\n", (2.f * 4.f * N * numITER) / (1e6 * timeTotal), iDivUp(N / ILP, BLOCKSIZE));
gpuErrchk(cudaMemcpy(h_b, d_b, N * sizeof(int), cudaMemcpyDeviceToHost));
for (int i = 0; i < N; i++) if (h_a[i] != h_b[i]) { printf("Error at i = %i for kernel0! Host = %i; Device = %i\n", i, h_a[i], h_b[i]); return 1; }
return 0;
}
<强>性能强>
GT 920M
N = 512 - ILP = 1 - BLOCKSIZE = 512 (1 block - each block processes 512 elements) - Bandwidth = 0.092 GB / s
N = 1024 - ILP = 1 - BLOCKSIZE = 512 (2 blocks - each block processes 512 elements) - Bandwidth = 0.15 GB / s
N = 2048 - ILP = 1 - BLOCKSIZE = 512 (4 blocks - each block processes 512 elements) - Bandwidth = 0.37 GB / s
N = 2048 - ILP = 2 - BLOCKSIZE = 256 (4 blocks - each block processes 512 elements) - Bandwidth = 0.36 GB / s
N = 2048 - ILP = 4 - BLOCKSIZE = 128 (4 blocks - each block processes 512 elements) - Bandwidth = 0.35 GB / s
N = 2048 - ILP = 8 - BLOCKSIZE = 64 (4 blocks - each block processes 512 elements) - Bandwidth = 0.26 GB / s
N = 2048 - ILP = 16 - BLOCKSIZE = 32 (4 blocks - each block processes 512 elements) - Bandwidth = 0.31 GB / s
N = 4096 - ILP = 1 - BLOCKSIZE = 512 (8 blocks - each block processes 512 elements) - Bandwidth = 0.53 GB / s
N = 4096 - ILP = 2 - BLOCKSIZE = 256 (8 blocks - each block processes 512 elements) - Bandwidth = 0.61 GB / s
N = 4096 - ILP = 4 - BLOCKSIZE = 128 (8 blocks - each block processes 512 elements) - Bandwidth = 0.74 GB / s
N = 4096 - ILP = 8 - BLOCKSIZE = 64 (8 blocks - each block processes 512 elements) - Bandwidth = 0.74 GB / s
N = 4096 - ILP = 16 - BLOCKSIZE = 32 (8 blocks - each block processes 512 elements) - Bandwidth = 0.56 GB / s
N = 8192 - ILP = 1 - BLOCKSIZE = 512 (16 blocks - each block processes 512 elements) - Bandwidth = 1.4 GB / s
N = 8192 - ILP = 2 - BLOCKSIZE = 256 (16 blocks - each block processes 512 elements) - Bandwidth = 1.1 GB / s
N = 8192 - ILP = 4 - BLOCKSIZE = 128 (16 blocks - each block processes 512 elements) - Bandwidth = 1.5 GB / s
N = 8192 - ILP = 8 - BLOCKSIZE = 64 (16 blocks - each block processes 512 elements) - Bandwidth = 1.4 GB / s
N = 8192 - ILP = 16 - BLOCKSIZE = 32 (16 blocks - each block processes 512 elements) - Bandwidth = 1.3 GB / s
...
N = 16777216 - ILP = 1 - BLOCKSIZE = 512 (32768 blocks - each block processes 512 elements) - Bandwidth = 12.9 GB / s
N = 16777216 - ILP = 2 - BLOCKSIZE = 256 (32768 blocks - each block processes 512 elements) - Bandwidth = 12.8 GB / s
N = 16777216 - ILP = 4 - BLOCKSIZE = 128 (32768 blocks - each block processes 512 elements) - Bandwidth = 12.8 GB / s
N = 16777216 - ILP = 8 - BLOCKSIZE = 64 (32768 blocks - each block processes 512 elements) - Bandwidth = 12.7 GB / s
N = 16777216 - ILP = 16 - BLOCKSIZE = 32 (32768 blocks - each block processes 512 elements) - Bandwidth = 12.6 GB / s