我正在尝试为R中的贝叶斯回归模型编写一个Gibbs采样器,但是我在运行代码时遇到了问题。似乎sigma.update函数中的beta版本正在发生变化。当我运行代码时,我收到一条错误,上面写着“x%*%beta中的错误:不一致的参数”这是我的代码的样子:
x0 <- rep(1, 1000)
x1 <- rnorm(1000, 5, 7)
x <- cbind(x0, x1)
true_error <- rnorm(1000, 0, 2)
true_beta <- c(1.1, -8.2)
y <- x %*% true_beta + true_error
beta0 <- c(1, 1)
sigma0 <- 1
a <- b <- 1
burnin <- 0
thin <- 1
n <- 100
gibbs <- function(n.sims, beta.start, a, b,
y, x, burnin, thin) {
beta.draws <- matrix(NA, nrow=n.sims, ncol=1)
sigma.draws<- c()
beta.cur <- beta.start
sigma.update <- function(a,b, beta, y, x) {
1 / rgamma(1, a + ((length(x)) / 2),
b + (1 / 2) %*% (t(y - x %*% beta) %*% (y - x %*% beta)))
}
beta.update <- function(x, y, sigma) {
rnorm(1, (solve(t(x) %*% x) %*% t(x) %*% y),
sigma^2 * (solve(t(x) %*%x)))
}
for (i in 1:n.sims) {
sigma.cur <- sigma.update(a, b, beta.cur, y, x)
beta.cur <- beta.update(x, y, sigma.cur)
if (i > burnin & (i - burnin) %% thin == 0) {
sigma.draws[(i - burnin) / thin ] <- sigma.cur
beta.draws[(i - burnin) / thin,] <- beta.cur
}
}
return (list(sigma.draws, beta.draws) )
}
gibbs(n, beta0, a, b, y, x, burnin, thin)
答案 0 :(得分:1)
函数beta.update
不正确,返回NaN
。您正在参数sd
中定义一个传递给rnorm
的矩阵,在此参数中需要一个向量。我认为你要做的事情可以用这种方式完成:
beta.update <- function(x, y, sigma) {
rn <- rnorm(n=2, mean=0, sd=sigma)
xtxinv <- solve(crossprod(x))
as.vector(xtxinv %*% crossprod(x, y)) + xtxinv %*% rn
}
请注意,您正在计算在所有迭代中修复的一些元素。例如,您可以定义t(x) %*% x
一次,并将此元素作为参数传递给其他函数。通过这种方式,您可以避免在每次迭代时执行这些操作,从而节省了一些计算时间,可能还需要一些时间。
修改强>
根据您的代码,我就是这样做的:
x0 <- rep(1, 1000)
x1 <- rnorm(1000, 5, 7)
x <- cbind(x0, x1)
true_error <- rnorm(1000, 0, 2)
true_beta <- c(1.1, -8.2)
y <- x %*% true_beta + true_error
beta0 <- c(1, 1)
sigma0 <- 1
a <- b <- 1
burnin <- 0
thin <- 1
n <- 100
gibbs <- function(n.sims, beta.start, a, b, y, x, burnin, thin)
{
beta.draws <- matrix(NA, nrow=n.sims, ncol=2)
sigma.draws<- c()
beta.cur <- beta.start
sigma.update <- function(a,b, beta, y, x) {
1 / rgamma(1, a + ((length(x)) / 2),
b + (1 / 2) %*% (t(y - x %*% beta) %*% (y - x %*% beta)))
}
beta.update <- function(x, y, sigma) {
rn <- rnorm(n=2, mean=0, sd=sigma)
xtxinv <- solve(crossprod(x))
as.vector(xtxinv %*% crossprod(x, y)) + xtxinv %*% rn
}
for (i in 1:n.sims) {
sigma.cur <- sigma.update(a, b, beta.cur, y, x)
beta.cur <- beta.update(x, y, sigma.cur)
if (i > burnin & (i - burnin) %% thin == 0) {
sigma.draws[(i - burnin) / thin ] <- sigma.cur
beta.draws[(i - burnin) / thin,] <- beta.cur
}
}
return (list(sigma.draws, beta.draws) )
}
这就是我得到的:
set.seed(123)
res <- gibbs(n, beta0, a, b, y, x, burnin, thin)
head(res[[1]])
# [1] 3015.256257 13.632748 1.950697 1.861225 1.928381 1.884090
tail(res[[1]])
# [1] 1.887497 1.915900 1.984031 2.010798 1.888575 1.994850
head(res[[2]])
# [,1] [,2]
# [1,] 7.135294 -8.697288
# [2,] 1.040720 -8.193057
# [3,] 1.047058 -8.193531
# [4,] 1.043769 -8.193183
# [5,] 1.043766 -8.193279
# [6,] 1.045247 -8.193356
tail(res[[2]])
# [,1] [,2]
# [95,] 1.048501 -8.193550
# [96,] 1.037859 -8.192848
# [97,] 1.045809 -8.193377
# [98,] 1.045611 -8.193374
# [99,] 1.038800 -8.192880
# [100,] 1.047063 -8.193479