有没有办法从依赖数据的pairwise.t.test
中获取t值和df?
示例:
data<-c(2,3,2,2,5,2,4,2,4,3,4,2)
time<-c(1,1,1,1,2,2,2,2,3,3,3,3)
pairwise.t.test(data, time,p.adjust.method= "bonf",paired=TRUE)
给我:
Pairwise comparisons using paired t tests
data: data and time
1 2
2 1.00 -
3 0.55 1.00
P value adjustment method: bonferroni
我想要t值和df的格式相同。
感谢您的帮助!
答案 0 :(得分:2)
您可以通过编写自定义函数从pairwise.t.test获取df和t值。这是一个可以执行此操作的函数:
pairwise.t.test.with.t.and.df <- function (x, g, p.adjust.method = p.adjust.methods, pool.sd = !paired,
paired = FALSE, alternative = c("two.sided", "less", "greater"),
...)
{
if (paired & pool.sd)
stop("pooling of SD is incompatible with paired tests")
DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(g)))
g <- factor(g)
p.adjust.method <- match.arg(p.adjust.method)
alternative <- match.arg(alternative)
if (pool.sd) {
METHOD <- "t tests with pooled SD"
xbar <- tapply(x, g, mean, na.rm = TRUE)
s <- tapply(x, g, sd, na.rm = TRUE)
n <- tapply(!is.na(x), g, sum)
degf <- n - 1
total.degf <- sum(degf)
pooled.sd <- sqrt(sum(s^2 * degf)/total.degf)
compare.levels <- function(i, j) {
dif <- xbar[i] - xbar[j]
se.dif <- pooled.sd * sqrt(1/n[i] + 1/n[j])
t.val <- dif/se.dif
if (alternative == "two.sided")
2 * pt(-abs(t.val), total.degf)
else pt(t.val, total.degf, lower.tail = (alternative ==
"less"))
}
compare.levels.t <- function(i, j) {
dif <- xbar[i] - xbar[j]
se.dif <- pooled.sd * sqrt(1/n[i] + 1/n[j])
t.val = dif/se.dif
t.val
}
}
else {
METHOD <- if (paired)
"paired t tests"
else "t tests with non-pooled SD"
compare.levels <- function(i, j) {
xi <- x[as.integer(g) == i]
xj <- x[as.integer(g) == j]
t.test(xi, xj, paired = paired, alternative = alternative,
...)$p.value
}
compare.levels.t <- function(i, j) {
xi <- x[as.integer(g) == i]
xj <- x[as.integer(g) == j]
t.test(xi, xj, paired = paired, alternative = alternative,
...)$statistic
}
compare.levels.df <- function(i, j) {
xi <- x[as.integer(g) == i]
xj <- x[as.integer(g) == j]
t.test(xi, xj, paired = paired, alternative = alternative,
...)$parameter
}
}
PVAL <- pairwise.table(compare.levels, levels(g), p.adjust.method)
TVAL <- pairwise.table.t(compare.levels.t, levels(g), p.adjust.method)
if (pool.sd)
DF <- total.degf
else
DF <- pairwise.table.t(compare.levels.df, levels(g), p.adjust.method)
ans <- list(method = METHOD, data.name = DNAME, p.value = PVAL,
p.adjust.method = p.adjust.method, t.value = TVAL, dfs = DF)
class(ans) <- "pairwise.htest"
ans
}
pairwise.table.t <- function (compare.levels.t, level.names, p.adjust.method)
{
ix <- setNames(seq_along(level.names), level.names)
pp <- outer(ix[-1L], ix[-length(ix)], function(ivec, jvec) sapply(seq_along(ivec),
function(k) {
i <- ivec[k]
j <- jvec[k]
if (i > j)
compare.levels.t(i, j)
else NA
}))
pp[lower.tri(pp, TRUE)] <- pp[lower.tri(pp, TRUE)]
pp
}
执行示例:
data<-c(2,3,2,2,5,2,4,2,4,3,4,2)
time<-c(1,1,1,1,2,2,2,2,3,3,3,3)
result <- pairwise.t.test.with.t.and.df(data, time,p.adjust.method= "bonf",paired=TRUE)
# Print t-values
result[[5]]
# Print dfs
result[[6]]
答案 1 :(得分:0)
可以从t.test
中提取df和统计值。
t.test(data, time, paired = TRUE)
Paired t-test
data: data and time
t = 2.9304, df = 11, p-value = 0.01368
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.2281644 1.6051689
sample estimates:
mean of the differences
0.9166667
#Extract parameters
result<-t.test(data,time,paired = TRUE)
result$statistic
t
2.930375
result$parameter
df
11