假设您有10个功能用于创建3个群集。有没有办法看到每个功能对每个群集的贡献水平?
我希望能够说的是,对于群集k1,特征1,4,6是主要特征,其中群集k2的主要特征是2,5,7。
这是我正在使用的基本设置:
k_means = KMeans(init='k-means++', n_clusters=3, n_init=10)
k_means.fit(data_features)
k_means_labels = k_means.labels_
答案 0 :(得分:17)
您可以使用
PCA可以通过数据协方差(或相关)矩阵的特征值分解或数据矩阵的奇异值分解来完成,通常在对每个属性的平均居中(和归一化或使用Z分数)数据矩阵之后。 PCA的结果通常根据组件得分进行讨论,有时称为因子得分(对应于特定数据点的转换变量值)和加载(每个标准化原始变量应乘以得到组件得分的权重) )。
一些要点:
1, 4, 1, 2
的特征。这些是由corresp解释的差异。向量。第二个值属于第一个主要成分,因为它解释了整体方差的50%,最后一个值属于第二个主要成分,解释了整体方差的25%。np.cov
)或相关性(见上文)您需要import numpy as np
和scipy as sp
。它使用sp.linalg.eigh
进行分解。您可能还想查看scikit decomposition module。
PCA在数据矩阵上执行,其中行中的观察(对象)和列中的特征。
def dim_red_pca(X, d=0, corr=False):
r"""
Performs principal component analysis.
Parameters
----------
X : array, (n, d)
Original observations (n observations, d features)
d : int
Number of principal components (default is ``0`` => all components).
corr : bool
If true, the PCA is performed based on the correlation matrix.
Notes
-----
Always all eigenvalues and eigenvectors are returned,
independently of the desired number of components ``d``.
Returns
-------
Xred : array, (n, m or d)
Reduced data matrix
e_values : array, (m)
The eigenvalues, sorted in descending manner.
e_vectors : array, (n, m)
The eigenvectors, sorted corresponding to eigenvalues.
"""
# Center to average
X_ = X-X.mean(0)
# Compute correlation / covarianz matrix
if corr:
CO = np.corrcoef(X_.T)
else:
CO = np.cov(X_.T)
# Compute eigenvalues and eigenvectors
e_values, e_vectors = sp.linalg.eigh(CO)
# Sort the eigenvalues and the eigenvectors descending
idx = np.argsort(e_values)[::-1]
e_vectors = e_vectors[:, idx]
e_values = e_values[idx]
# Get the number of desired dimensions
d_e_vecs = e_vectors
if d > 0:
d_e_vecs = e_vectors[:, :d]
else:
d = None
# Map principal components to original data
LIN = np.dot(d_e_vecs, np.dot(d_e_vecs.T, X_.T)).T
return LIN[:, :d], e_values, e_vectors
这是一个示例脚本,它使用给定的函数并使用scipy.cluster.vq.kmeans2
进行聚类。请注意,结果因每次运行而异。这是由于起始集群随机初始化。
import numpy as np
import scipy as sp
from scipy.cluster.vq import kmeans2
import matplotlib.pyplot as plt
SN = np.array([ [1.325, 1.000, 1.825, 1.750],
[2.000, 1.250, 2.675, 1.750],
[3.000, 3.250, 3.000, 2.750],
[1.075, 2.000, 1.675, 1.000],
[3.425, 2.000, 3.250, 2.750],
[1.900, 2.000, 2.400, 2.750],
[3.325, 2.500, 3.000, 2.000],
[3.000, 2.750, 3.075, 2.250],
[2.075, 1.250, 2.000, 2.250],
[2.500, 3.250, 3.075, 2.250],
[1.675, 2.500, 2.675, 1.250],
[2.075, 1.750, 1.900, 1.500],
[1.750, 2.000, 1.150, 1.250],
[2.500, 2.250, 2.425, 2.500],
[1.675, 2.750, 2.000, 1.250],
[3.675, 3.000, 3.325, 2.500],
[1.250, 1.500, 1.150, 1.000]], dtype=float)
clust,labels_ = kmeans2(SN,3) # cluster with 3 random initial clusters
# PCA on orig. dataset
# Xred will have only 2 columns, the first two princ. comps.
# evals has shape (4,) and evecs (4,4). We need all eigenvalues
# to determine the portion of variance
Xred, evals, evecs = dim_red_pca(SN,2)
xlab = '1. PC - ExpVar = {:.2f} %'.format(evals[0]/sum(evals)*100) # determine variance portion
ylab = '2. PC - ExpVar = {:.2f} %'.format(evals[1]/sum(evals)*100)
# plot the clusters, each set separately
plt.figure()
ax = plt.gca()
scatterHs = []
clr = ['r', 'b', 'k']
for cluster in set(labels_):
scatterHs.append(ax.scatter(Xred[labels_ == cluster, 0], Xred[labels_ == cluster, 1],
color=clr[cluster], label='Cluster {}'.format(cluster)))
plt.legend(handles=scatterHs,loc=4)
plt.setp(ax, title='First and Second Principle Components', xlabel=xlab, ylabel=ylab)
# plot also the eigenvectors for deriving the influence of each feature
fig, ax = plt.subplots(2,1)
ax[0].bar([1, 2, 3, 4],evecs[0])
plt.setp(ax[0], title="First and Second Component's Eigenvectors ", ylabel='Weight')
ax[1].bar([1, 2, 3, 4],evecs[1])
plt.setp(ax[1], xlabel='Features', ylabel='Weight')
特征向量显示组件的每个特征的权重
让我们看看群集零,红色群。我们对第一个组件最感兴趣,因为它解释了3/4的分布。红色簇位于第一个组件的上部区域。所有观察都产生相当高的值。这是什么意思?现在看一下我们第一眼看到的第一个组件的线性组合,第二个特征相当不重要(对于这个组件)。第一和第四个特征是加权最高的,第三个特征是负分。这意味着,因为所有红色顶点在第一台PC上都有相当高的分数 - 这些顶点在第一个和最后一个特征中具有较高的值,同时它们的分数较低第三个特点。
关于第二个功能,我们可以看一下第二台PC。但请注意,总体影响要小得多,因为该组件仅解释了大约16%的差异,而第一台PC的差异仅为74%。
答案 1 :(得分:3)
你可以这样做:
>>> import numpy as np
>>> import sklearn.cluster as cl
>>> data = np.array([99,1,2,103,44,63,56,110,89,7,12,37])
>>> k_means = cl.KMeans(init='k-means++', n_clusters=3, n_init=10)
>>> k_means.fit(data[:,np.newaxis]) # [:,np.newaxis] converts data from 1D to 2D
>>> k_means_labels = k_means.labels_
>>> k1,k2,k3 = [data[np.where(k_means_labels==i)] for i in range(3)] # range(3) because 3 clusters
>>> k1
array([44, 63, 56, 37])
>>> k2
array([ 99, 103, 110, 89])
>>> k3
array([ 1, 2, 7, 12])
答案 2 :(得分:1)
我认为通过说"一个主要特征"你的意思是 - 对班级产生了最大的影响。您可以做的一个很好的探索是查看聚类中心的坐标。例如,在每个K中心协调每个特征的坐标。
当然,任何大规模的特征都会对观察之间的距离产生更大的影响,因此在进行任何分析之前,请确保您的数据得到很好的扩展。
答案 3 :(得分:1)
试试这个,
estimator=KMeans()
estimator.fit(X)
res=estimator.__dict__
print res['cluster_centers_']
您将获得群集矩阵和feature_weights,您可以得出结论,具有更多权重的功能主要用于贡献群集。
答案 4 :(得分:0)