如何实现numpy.cov()函数?

时间:2014-12-12 16:53:03

标签: python numpy scipy

基于等式,我有自己的协方差函数实现:

enter image description here

'''
Calculate the covariance coefficient between two variables.
'''

import numpy as np

X = np.array([171, 184, 210, 198, 166, 167])
Y = np.array([78, 77, 98, 110, 80, 69])

# Expected value function.
def E(X, P):
    expectedValue = 0
    for i in np.arange(0, np.size(X)):
        expectedValue += X[i] * (P[i] / np.size(X))
    return expectedValue 

# Covariance coefficient function.
def covariance(X, Y):
    '''
    Calculate the product of the multiplication for each pair of variables
    values.
    '''
    XY = X * Y

    # Calculate the expected values for each variable and for the XY.
    EX = E(X, np.ones(np.size(X)))
    EY = E(Y, np.ones(np.size(Y)))
    EXY = E(XY, np.ones(np.size(XY)))

    # Calculate the covariance coefficient.
    return EXY - (EX * EY)

# Display matrix of the covariance coefficient values.
covMatrix = np.array([[covariance(X, X), covariance(X, Y)], 
[covariance(Y, X), covariance(Y, Y)]])  
print("My function:", covMatrix)

# Display standard numpy.cov() covariance coefficient matrix.
print("Numpy.cov() function:", np.cov([X, Y]))

但问题是,我从我的函数和numpy.cov()获得了不同的值,即:

My function: [[ 273.88888889  190.61111111]
 [ 190.61111111  197.88888889]]
Numpy.cov() function: [[ 328.66666667  228.73333333]
 [ 228.73333333  237.46666667]]

为什么?如何实现numpy.cov()功能?如果函数numpy.cov()得到很好的实现,我做错了什么?我只想说,我的函数covariance()的结果与用于计算协方差系数的paper示例的结果一致,例如http://www.naukowiec.org/wzory/statystyka/kowariancja_11.html

1 个答案:

答案 0 :(得分:16)

numpy函数与您的规范化具有不同的默认设置。尝试改为

>>> np.cov([X, Y], ddof=0)
array([[ 273.88888889,  190.61111111],
       [ 190.61111111,  197.88888889]])

参考文献: