我目前正在this assignment解决第二次练习(这不是作业,我实际上是在努力解决this other problem)。我的解决方案使用BFS搜索“Lights Out”问题变体的最小解决方案,其中按下灯光将翻转同一行和同一列上每个灯光的状态。
我认为我的实现是正确的,但它有点太慢:它目前在我的计算机上运行时间超过12秒(这对我来说是不可接受的)。
from copy import deepcopy
from itertools import chain
from Queue import PriorityQueue
# See: http://www.seas.upenn.edu/~cis391/Homework/Homework2.pdf
class Puzzle(object):
def __init__(self, matrix):
self.matrix = matrix
self.dim = len(matrix)
def __repr__(self):
return str(self.matrix)
def solved(self):
return sum([sum(row) for row in self.matrix]) == 0
def move(self, i, j):
for k in range(self.dim):
self.matrix[i][k] = (self.matrix[i][k] + 1) % 2
self.matrix[k][j] = (self.matrix[k][j] + 1) % 2
self.matrix[i][j] = (self.matrix[i][j] + 1) % 2
return self
def copy(self):
return deepcopy(self)
def next(self):
result = []
for i in range(self.dim):
for j in range(self.dim):
result.append(self.copy().move(i, j))
return result
def solve(self):
q = PriorityQueue()
v = set()
q.put((0, self))
while True:
c = q.get()
if c[1].solved():
return c[0]
else:
for el in c[1].next():
t = el.tuple()
if t not in v:
v.add(t)
q.put((c[0] + 1, el))
def tuple(self):
return tuple(chain.from_iterable(self.matrix))
根据cProfile
,罪魁祸首似乎是deepcopy
电话。另一方面,我看不到其他选择:我需要在队列中添加另一个Puzzle
对象,其中包含self.matrix
的新副本。
如何加快实施?
以下是我正在使用的测试用例:
print Puzzle([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]).solve()
应该返回1(我们只需按下右下角的灯光)。
编辑:这是另一个粗糙的测试案例:
print Puzzle([
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
]).solve()
它的解决方案最多为14:按下已经打开的对角线上的所有灯光。不幸的是,@ zch令人印象深刻的加速并不足以解决这个问题,让我相信,由于高分支因素,BFS不是解决这个问题的正确方法。
答案 0 :(得分:3)
有许多优化工作要做。
首先,避免使用deepcopy
,将其实现为您自己的复制(这本身对我的速度提高了5倍):
class Puzzle(object):
def __init__(self, matrix):
self.matrix = [list(row) for row in matrix]
self.dim = len(matrix)
def copy(self):
return Puzzle(self.matrix)
其次,在BFS中,您不需要优先级队列,使用Queue
或实现自己的排队。这给了一些加速。第三,检查是否在将其放入队列之前解决,而不是在解决之后。这应该允许你在相当的时间内更深入一级:
def solve(self):
v = set()
q = [(0, self)]
i = 0
while True:
c = q[i]
i += 1
for el in c[1].next():
t = el.tuple()
if t not in v:
if el.solved():
return c[0] + 1
v.add(t)
q.append((c[0] + 1, el))
此外,使用位列表列表是非常低效的存储器。您可以将所有位打包成一个整数,并获得更快的解决方案。此外,您可以为允许的移动预先计算遮罩:
def bits(iterable):
bit = 1
res = 0
for elem in iterable:
if elem:
res |= bit
bit <<= 1
return res
def mask(dim, i, j):
res = 0
for idx in range(dim * i, dim * (i + 1)):
res |= 1 << idx
for idx in range(j, dim * dim, dim):
res |= 1 << idx
return res
def masks(dim):
return [mask(dim, i, j) for i in range(dim) for j in range(dim)]
class Puzzle(object):
def __init__(self, matrix):
if isinstance(matrix, Puzzle):
self.matrix = matrix.matrix
self.dim = matrix.dim
self.masks = matrix.masks
else:
self.matrix = bits(sum(matrix, []))
self.dim = len(matrix)
self.masks = masks(len(matrix))
def __repr__(self):
return str(self.matrix)
def solved(self):
return self.matrix == 0
def next(self):
for mask in self.masks:
puzzle = Puzzle(self)
puzzle.matrix ^= mask
yield puzzle
def solve(self):
v = set()
q = [(0, self)]
i = 0
while True:
c = q[i]
i += 1
for el in c[1].next():
t = el.matrix
if t not in v:
if el.solved():
return c[0] + 1
v.add(t)
q.append((c[0] + 1, el))
最后,对于另一个因子5,您可以传递位矩阵,而不是整个Puzzle
个对象,并且还可以内联一些最常用的函数。
def solve(self):
v = set()
q = [(0, self.matrix)]
i = 0
while True:
dist, matrix = q[i]
i += 1
for mask in self.masks:
t = matrix ^ mask
if t not in v:
if t == 0:
return dist + 1
v.add(t)
q.append((dist + 1, t))
对我来说,这些优化加起来可以加速约250倍。
答案 1 :(得分:2)
我将求解改为
def solve(self):
q = PriorityQueue()
v = set()
q.put((0, self))
while True:
c = q.get()
if c[1].solved():
return c[0]
else:
for i in range(self.dim):
for j in range(self.dim):
el = c[1].move(i, j) # do the move
t = el.tuple()
if t not in v:
v.add(t)
q.put((c[0] + 1, el.copy())) # copy only as needed
c[1].move(i, j) # undo the move
因为.move(i, j)
是它自己的逆。只有在没有访问过州时才会复制。这将时间从7.405秒减少到5.671秒。但这并没有预期的那么大。
然后替换def tuple(self)
:with:
def tuple(self):
return tuple(tuple(r) for r in self.matrix)
将时间从5.671s减少到 0.531s 。应该这样做。
完整列表:
from copy import deepcopy
from Queue import PriorityQueue
# See: http://www.seas.upenn.edu/~cis391/Homework/Homework2.pdf
class Puzzle(object):
def __init__(self, matrix):
self.matrix = matrix
self.dim = len(matrix)
def __repr__(self):
return str(self.matrix)
def solved(self):
return sum([sum(row) for row in self.matrix]) == 0
def move(self, i, j):
for k in range(self.dim):
self.matrix[i][k] = (self.matrix[i][k] + 1) % 2
self.matrix[k][j] = (self.matrix[k][j] + 1) % 2
self.matrix[i][j] = (self.matrix[i][j] + 1) % 2
return self
def copy(self):
return deepcopy(self)
def solve(self):
q = PriorityQueue()
v = set()
q.put((0, self))
while True:
c = q.get()
if c[1].solved():
return c[0]
else:
for i in range(self.dim):
for j in range(self.dim):
el = c[1].move(i, j) # do the move
t = el.tuple()
if t not in v:
v.add(t)
q.put((c[0] + 1, el.copy())) # copy only as needed
c[1].move(i, j) # undo the move
def tuple(self):
return tuple(tuple(r) for r in self.matrix)
print Puzzle([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]).solve()