我正在尝试建立我的第一个分形(毕达哥拉斯树):
alt text http://img13.imageshack.us/img13/926/lab6e.jpg
在Java中使用Graphics2D。这就是我现在所拥有的:
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
int i=0;
Scanner scanner = new Scanner(System.in);
System.out.println("Give amount of steps: ");
i = scanner.nextInt();
new Pitagoras(i);
}
}
class Pitagoras extends JFrame {
private int powt, counter;
public Pitagoras(int i) {
super("Pythagoras Tree.");
setSize(1000, 1000);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
powt = i;
}
private void paintIt(Graphics2D g) {
double p1=450, p2=800, size=200;
for (int i = 0; i < powt; i++) {
if (i == 0) {
g.drawRect((int)p1, (int)p2, (int)size, (int)size);
counter++;
}
else{
if( i%2 == 0){
//here I must draw two squares
}
else{
//here I must draw right triangle
}
}
}
}
@Override
public void paint(Graphics graph) {
Graphics2D g = (Graphics2D)graph;
paintIt(g);
}
所以基本上我设置了步数,然后绘制第一个方块(p1,p2和大小)。然后,如果step是奇数,我需要在正方形的顶部构建直角三角形。如果步骤是偶数我需要在三角形的自由边上构建两个正方形。我现在应该选择哪种方法来绘制三角形和正方形?我正在考虑使用简单的线条绘制三角形,用AffineTransform转换它们,但我不确定它是否可行并且它不能解决绘图方块。
答案 0 :(得分:4)
您不必在此树中绘制三角形,只需绘制正方形(正方形的边是三角形)。
您可以更轻松地查看递归(这些类型的分形是递归的标准示例):
在伪代码中
drawSquare(coordinates) {
// Check break condition (e.g. if square is very small)
// Calculate coordinates{1|2} of squares on top of this square -> Pythagoras
drawSquare(coordinates1)
drawSquare(coordinates2)
}
因为我经常编写分形,所以提示:在BufferedImage中绘制分形本身,只在paint-method中绘制图像。 paint-Method可能每秒调用几次,因此它必须是faaaaast。
也不要直接在JFrame中绘图,而是使用Canvas(如果你想使用awt)或JPanel(如果你使用swing)。
答案 1 :(得分:1)
我的最终解决方案:
import java.awt.*;
import java.util.Scanner;
import javax.swing.*;
public class Main extends JFrame {;
public Main(int n) {
setSize(900, 900);
setTitle("Pythagoras tree");
add(new Draw(n));
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.print("Give amount of steps: ");
new Main(sc.nextInt());
}
}
class Draw extends JComponent {
private int height = 800;
private int width = 800;
private int steps;
public Draw(int n) {
steps = n;
Dimension d = new Dimension(width, height);
setMinimumSize(d);
setPreferredSize(d);
setMaximumSize(d);
}
@Override
public void paintComponent(Graphics g) {
super.paintComponent(g);
g.setColor(Color.white);
g.fillRect(0, 0, width, height);
g.setColor(Color.black);
int x1, x2, x3, y1, y2, y3;
int base = width/7;
x1 = (width/2)-(base/2);
x2 = (width/2)+(base/2);
x3 = width/2;
y1 = (height-(height/15))-base;
y2 = height-(height/15);
y3 = (height-(height/15))-(base+(base/2));
g.drawPolygon(new int[]{x1, x1, x2, x2, x1}, new int[]{y1, y2, y2, y1, y1}, 5);
int n1 = steps;
if(--n1 > 0){
g.drawPolygon(new int[] {x1, x3, x2}, new int[] {y1, y3, y1}, 3);
paintMore(n1, g, x1, x3, x2, y1, y3, y1);
paintMore(n1, g, x2, x3, x1, y1, y3, y1);
}
}
public void paintMore(int n1, Graphics g, double x1_1, double x2_1, double x3_1, double y1_1, double y2_1, double y3_1){
int x1, x2, x3, y1, y2, y3;
x1 = (int)(x1_1 + (x2_1-x3_1));
x2 = (int)(x2_1 + (x2_1-x3_1));
x3 = (int)(((x2_1 + (x2_1-x3_1)) + ((x2_1-x3_1)/2)) + ((x1_1-x2_1)/2));
y1 = (int)(y1_1 + (y2_1-y3_1));
y2 = (int)(y2_1 + (y2_1-y3_1));
y3 = (int)(((y1_1 + (y2_1-y3_1)) + ((y2_1-y1_1)/2)) + ((y2_1-y3_1)/2));
g.setColor(Color.green);
g.drawPolygon(new int[] {x1, x2, (int)x2_1, x1}, new int[] {y1, y2, (int)y2_1, y1}, 4);
g.drawLine((int)x1, (int)y1, (int)x1_1, (int)y1_1);
g.drawLine((int)x2_1, (int)y2_1, (int)x2, (int)y2);
g.drawLine((int)x1, (int)y1, (int)x2, (int)y2);
if(--n1 > 0){
g.drawLine((int)x1, (int)y1, (int)x3, (int)y3);
g.drawLine((int)x2, (int)y2, (int)x3, (int)y3);
paintMore(n1, g, x1, x3, x2, y1, y3, y2);
paintMore(n1, g, x2, x3, x1, y2, y3, y1);
}
}
}