#include <stdio.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>
#define MAXNUM 2000000000
#define MINNUM 1990000001
#define MAXTRIES 10
unsigned long long b, e, m, result;
int modulo(b, e, m)
{
result = 1;
while(e > 0)
{
if(e % 2 == 1)
{
result = (result * b);
}
b = (b * b) % m;
e = e / 2;
}
return result % m;
}
int isPrime(n)
{
unsigned long long a;
int i;
for(i = 1; i <= 10; i++)
{
a = rand() % (n - 1) + 1;
if(modulo(a, n - 1, n) != 1)
{
return 0;
}
}
return 1;
}
int main()
{
unsigned int prime = 0;
unsigned int flag = 0;
unsigned int tries;
unsigned int start;
long curtime;
unsigned long long p;
curtime = time(NULL);
srand((unsigned int) curtime);
printf("Checking range [1990000001, 2000000000] for prime numbers.\n");
if(MINNUM % 2 == 0)
{
start = MINNUM + 1;
}
else
{
start = MINNUM;
}
printf("Trying Fermat test with seed %ld \n\n",curtime);
prime = 0;
for(tries = 1; tries <= MAXTRIES; tries++)
{
clock_t tic = clock();
for(p = start; p <= MAXNUM; p += 2)
{
if(isPrime(p))
prime++;
}
clock_t toc = clock();
printf("Probabilistic algorithm: Found %ld primes in %f seconds.(tries = %d)\n", prime, (double)(toc - tic) / CLOCKS_PER_SEC,tries);
prime = 0;
}
return 0;
}
所以问题是算法在每次尝试5000000素数时找到它应该找到大约466646并有一些偏差。这意味着在每次尝试中都应该找到与上述相近的一些素数。
答案 0 :(得分:2)
看起来主要问题是由modulo()
函数中的整数溢出引起的。具体来说,result=(result*b)
会非常频繁地溢出。您需要将这些变量存储在64位无符号整数中,并且每次都计算此结果的模数。
这将起作用(在其他地方进行一些小的修正):
#include <inttypes.h>
#define MAXNUM 2000000000
#define MINNUM 1990000001
#define MAXTRIES 10
uint64_t modulo(uint64_t b, uint64_t e, uint64_t m){
uint64_t result=1;
while(e>0){
if(e%2==1){
result=(result*b)%m;
}
b=(b*b)%m;
e=e/2;
}
return result%m;
}
结果:
Checking range [1990000001, 2000000000] for prime numbers.
Trying Fermat test with seed 1416322197
Probabilistic algorithm: Found 466646 primes in 5.157485 seconds.(tries=1)