我有10个盒子,每个盒子可以容纳一个组/类型的项目中的一个项目,每个“组”类型只适合10种盒子类型中的一种。项目池可以有n个项目。这些团体拥有完全不同的物品。每个项目都有一个价格,我想要一个能产生所有不同可能性的算法,所以我可以根据项目属性计算出不同的价格点与每个项目的自定义排名/权重分配。
如此小问题的图片
BOX A - 可以包含项目1,2,3,4
BOX B - 可以有项目6,7,8,9,10,11,12
BOX C - 可以有项目13,15,16,20,21
更多细节
该解决方案将是一组BOX A,BOX B和AND BOX C,具有基于该组框的最大等级。每个方框只能包含该方框的一个指定项目。
物品是物体,物体有3个属性(坚固度,弹性,强度)。每个属性的分数可以为1-100。目标是为每个属性输入权重,然后逻辑将运行所有项目,并根据每个属性的权重确定排名最高的项目组合。为了便于说明,我为每个项目使用了3个属性,但项目可以有大约10个不同的属性。
项目存储在数据库中,它们有一个列,表示它们可以进入哪个框。所有框类型都存储在一个数组中,我可以将这些项目放在一个通用列表中。任何人都可以看到一种直截了当的方式。
我已经尝试过10个嵌套的foreach,看看我是否能找到更简单的方法。嵌套循环需要花费数小时才能运行。嵌套的每个基本上拉出所有组合,然后计算每个组合的排名,并存储排名前10位的项目组合输出
答案 0 :(得分:0)
我使用outstanding C# library进行排列和组合。
它为这类问题提供了有效的算法。
答案 1 :(得分:0)
不确定这是否是您正在寻找的,但根据我可以从您的问题中推断出的内容,使用LINQ将更加简单的编码。这是我对答案应该是什么的猜测:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ConsoleApplication1
{
public class Box
{
public string Id { get; set; }
public List<Item> Items {get;set;}
}
public class Item
{
public int Id { get; set; }
public int Firmness { get; set; }
public int Elasticity { get; set; }
public int Strength { get; set; }
public double Price { get; set; }
public int FirmnessWt { get; set; }
public int ElasWt { get; set; }
public int StrWt { get; set; }
public int ItemScore
{
get
{
return
(Firmness * FirmnessWt) +
(Elasticity * ElasWt) +
(Strength * StrWt);
}
}
}
class Program
{
static void Main(string[] args)
{
// set the rankings
int firmnessWt = 20;
int elasWt = 40;
int strWt = 80;
// generate the items
Item item1 = new Item { Id = 1, Elasticity = 1, Firmness = 4, Strength = 2, ElasWt=elasWt, FirmnessWt=firmnessWt, StrWt=strWt };
Item item2 = new Item { Id = 2, Elasticity = 2, Firmness = 3, Strength = 4, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item3 = new Item { Id = 3, Elasticity = 3, Firmness = 2, Strength = 1, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item4 = new Item { Id = 4, Elasticity = 4, Firmness = 1, Strength = 3, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item6 = new Item { Id = 6, Elasticity = 1, Firmness = 5, Strength = 2, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item7 = new Item { Id = 7, Elasticity = 1, Firmness = 4, Strength = 4, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item8 = new Item { Id = 8, Elasticity = 1, Firmness = 3, Strength = 1, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item9 = new Item { Id = 9, Elasticity = 2, Firmness = 2, Strength = 3, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item10 = new Item { Id = 10, Elasticity = 2, Firmness = 3, Strength = 2, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item11 = new Item { Id = 11, Elasticity = 2, Firmness = 2, Strength = 4, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item12 = new Item { Id = 12, Elasticity = 3, Firmness = 6, Strength = 1, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item13 = new Item { Id = 13, Elasticity = 3, Firmness = 5, Strength = 4, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item15 = new Item { Id = 15, Elasticity = 2, Firmness = 4, Strength = 5, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item16 = new Item { Id = 16, Elasticity = 3, Firmness = 2, Strength = 5, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item20 = new Item { Id = 20, Elasticity = 3, Firmness = 1, Strength = 7, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
Item item21 = new Item { Id = 21, Elasticity = 3, Firmness = 1, Strength = 4, ElasWt = elasWt, FirmnessWt = firmnessWt, StrWt = strWt };
// populate the 3 boxes with the generated items
List<Box> boxes = new List<Box>
{
new Box
{
Id = "A",
Items = new List<Item> { item1, item2, item3, item4 }
},
new Box
{
Id="B",
Items = new List<Item> { item6, item7, item8, item9, item10, item11, item12 }
},
new Box
{
Id="C",
Items = new List<Item> { item13, item15, item16, item20, item21 }
}
};
// calculate top candidate for firmness
List<Item> items = boxes.SelectMany(c => c.Items).ToList();
Item firmnessCandidate = items.OrderByDescending(a => a.Firmness).First();
// calculate top candidate for elasticity
Item elasticityCandidate = items.OrderByDescending(b => b.Elasticity).First();
// calculate top candidate for strength
Item strengthCandidate = items.OrderByDescending(c => c.Strength).First();
// calculate top candidate by combined weight
Item weightCandidate = items.OrderByDescending(w => w.ItemScore).First();
Console.WriteLine("Firmness - id:" + firmnessCandidate.Id.ToString() + ", score: " + firmnessCandidate.Firmness.ToString());
Console.WriteLine("Elasticity - id:" + elasticityCandidate.Id.ToString() + ", score: " + elasticityCandidate.Elasticity.ToString());
Console.WriteLine("Strength - id:" + strengthCandidate.Id.ToString() + ", score: " + strengthCandidate.Strength.ToString());
Console.WriteLine("Item score - id:" + weightCandidate.Id.ToString() + ", score: " + weightCandidate.ItemScore.ToString());
Console.ReadLine();
}
}
}
... HTH
答案 2 :(得分:0)
听起来你只需要从每个方框中获得“最佳”项目,因为在每个组中添加最佳项目的分数将获得最佳总体分数。如果是这样,您应该能够在数据库中使用正确的查询或在客户端的简单LINQ到对象查询中执行此操作(如果需要)。由于我不是SQL人员,所以我会选择客户端方法。使用Item类的明显定义:
public static double Score<T>(T item, IEnumerable<Weighting<T>> weights)
{
return weights.Aggregate(0.0, (p, w) => p + w.Apply(item));
}
public static T MaxBy<T>(this IEnumerable<T> items, Func<T, double> selector)
{
double curMax = double.MinValue;
T curItem = default(T);
foreach (T i in items)
{
double curValue = selector(i);
if (curValue > curMax)
{
curMax = curValue;
curItem = i;
}
}
return curItem;
}
public class Weighting<T>
{
public Weighting(double weight, Func<T, double> attributeSelector)
{
_weight = weight;
_attributeSelector = attributeSelector;
}
private readonly double _weight;
private readonly Func<T, double> _attributeSelector;
public double Apply(T item) { return _weight * _attributeSelector(item); }
}
Weighting<Item>[] weights = {new Weighting<Item>(1, i => i.Elasticity),
new Weighting<Item>(2, i => i.Firmness),
new Weighting<Item>(.5, i => i.Strength)};
var hsQuery = from i in allItems
group i by i.Box into boxItems
select boxItems.MaxBy(bi => Score(bi, weights));
我想有一种聪明的方法可以使加权分数成为SQL查询中的计算列,然后您可以group by box where score = max(score)
直接从数据库中获取结果。
答案 3 :(得分:0)
这看起来像二进制程序,其中
maximize $\sum_i c_i x_i$ (value function)
$x_i \in \{ 0, 1 \} \forall i$ (binary constraint)
$x_1 + x_2 + x_3 + x_4 = 1$ (exactly one item in box a constraint)
$x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12} = 1$
$x_{13} + x_{15} + x_{16} + x_{20} + x_{21} = 1$
$\sum_i p_i x_i <= P$ (price constraint)
(将上述内容粘贴到LaTeX评估器中,如math.se,以查看符号)
这可以使用分支定界进行优化,其步骤远远少于评估每种组合的步骤。