C#中的浮点数是否有良好的radixsort实现?

时间:2010-04-21 17:13:39

标签: c# algorithm sorting floating-point radix-sort

我有一个带有float类型字段的数据结构。这些结构的集合需要按浮点值进行排序。是否有基数排序实现。

如果没有,是否有快速访问指数,符号和尾数的方法。 因为如果你最后一次在尾数,指数和指数上对浮点数进行排序。你在O(n)中对浮点数进行排序。

5 个答案:

答案 0 :(得分:18)

<强>更新

我对这个主题很感兴趣,所以我坐下来实现它(使用this very fast and memory conservative implementation)。我还阅读了this one(感谢celion)并发现你甚至不必将浮点数分成尾数和指数来对其进行排序。您只需要一对一地进行比特并执行int排序。你只需要关心负值,在算法结束时必须将它们反向放在正值之前(我在算法的最后一次迭代中一步完成,以节省一些cpu时间)。 / p>

所以我的浮动radixsort:

public static float[] RadixSort(this float[] array)
{
    // temporary array and the array of converted floats to ints
    int[] t = new int[array.Length];
    int[] a = new int[array.Length];
    for (int i = 0; i < array.Length; i++)
        a[i] = BitConverter.ToInt32(BitConverter.GetBytes(array[i]), 0);

    // set the group length to 1, 2, 4, 8 or 16
    // and see which one is quicker
    int groupLength = 4;
    int bitLength = 32;

    // counting and prefix arrays
    // (dimension is 2^r, the number of possible values of a r-bit number) 
    int[] count = new int[1 << groupLength];
    int[] pref = new int[1 << groupLength];
    int groups = bitLength / groupLength;
    int mask = (1 << groupLength) - 1;
    int negatives = 0, positives = 0;

    for (int c = 0, shift = 0; c < groups; c++, shift += groupLength)
    {
        // reset count array 
        for (int j = 0; j < count.Length; j++)
            count[j] = 0;

        // counting elements of the c-th group 
        for (int i = 0; i < a.Length; i++)
        {
            count[(a[i] >> shift) & mask]++;

            // additionally count all negative 
            // values in first round
            if (c == 0 && a[i] < 0)
                negatives++;
        }
        if (c == 0) positives = a.Length - negatives;

        // calculating prefixes
        pref[0] = 0;
        for (int i = 1; i < count.Length; i++)
            pref[i] = pref[i - 1] + count[i - 1];

        // from a[] to t[] elements ordered by c-th group 
        for (int i = 0; i < a.Length; i++){
            // Get the right index to sort the number in
            int index = pref[(a[i] >> shift) & mask]++;

            if (c == groups - 1)
            {
                // We're in the last (most significant) group, if the
                // number is negative, order them inversely in front
                // of the array, pushing positive ones back.
                if (a[i] < 0)
                    index = positives - (index - negatives) - 1;
                else
                    index += negatives;
            }
            t[index] = a[i];
        }

        // a[]=t[] and start again until the last group 
        t.CopyTo(a, 0);
    }

    // Convert back the ints to the float array
    float[] ret = new float[a.Length];
    for (int i = 0; i < a.Length; i++)
        ret[i] = BitConverter.ToSingle(BitConverter.GetBytes(a[i]), 0);

    return ret;
}

它稍微慢于int基数排序,因为在函数的开头和结尾复制了数组,其中浮点数按位被复制到整数和返回。然而,整个功能也是O(n)。在任何情况下都比你提出的连续排序快3倍。我不再看到很多优化空间,但如果有人这样做:随时告诉我。

要对降序进行排序,请在最后更改此行:

ret[i] = BitConverter.ToSingle(BitConverter.GetBytes(a[i]), 0);

到此:

ret[a.Length - i - 1] = BitConverter.ToSingle(BitConverter.GetBytes(a[i]), 0);

<强>测量

我设置了一些简短的测试,包含浮动的所有特殊情况(NaN,+ / - Inf,Min / Max值,0)和随机数。它与Linq或Array.Sort排序浮点数的排序完全相同:

NaN -> -Inf -> Min -> Negative Nums -> 0 -> Positive Nums -> Max -> +Inf

所以我用大量的10M数字进行了测试:

float[] test = new float[10000000];
Random rnd = new Random();
for (int i = 0; i < test.Length; i++)
{
    byte[] buffer = new byte[4];
    rnd.NextBytes(buffer);
    float rndfloat = BitConverter.ToSingle(buffer, 0);
    switch(i){
        case 0: { test[i] = float.MaxValue; break; }
        case 1: { test[i] = float.MinValue; break; }
        case 2: { test[i] = float.NaN; break; }
        case 3: { test[i] = float.NegativeInfinity; break; }
        case 4: { test[i] = float.PositiveInfinity; break; }
        case 5: { test[i] = 0f; break; }
        default: { test[i] = test[i] = rndfloat; break; }
    }
}

并停止了不同排序算法的时间:

Stopwatch sw = new Stopwatch();
sw.Start();

float[] sorted1 = test.RadixSort();

sw.Stop();
Console.WriteLine(string.Format("RadixSort: {0}", sw.Elapsed));
sw.Reset();
sw.Start();

float[] sorted2 = test.OrderBy(x => x).ToArray();

sw.Stop();
Console.WriteLine(string.Format("Linq OrderBy: {0}", sw.Elapsed));
sw.Reset();
sw.Start();

Array.Sort(test);
float[] sorted3 = test;

sw.Stop();
Console.WriteLine(string.Format("Array.Sort: {0}", sw.Elapsed));

输出是(更新:现在使用发布版本运行,而不是调试):

RadixSort: 00:00:03.9902332
Linq OrderBy: 00:00:17.4983272
Array.Sort: 00:00:03.1536785

大约是Linq的四倍多。那不错。但仍然没有那么快Array.Sort,但也没有那么糟糕。但我真的很惊讶这个:我预计它会比非常小的阵列上的Linq慢一点。但后来我用20个元素进行了测试:

RadixSort: 00:00:00.0012944
Linq OrderBy: 00:00:00.0072271
Array.Sort: 00:00:00.0002979

甚至这次我的Radixsort比Linq快,但方式比数组排序慢。 :)

更新2:

我做了一些测量,发现了一些有趣的事情:较长的组长度常数意味着更少的迭代次数和更多的内存使用量。如果你使用16位的组长度(只有2次迭代),那么在对小数组进行排序时会产生巨大的内存开销,但如果涉及大于大约100k元素的数组,则可以击败Array.Sort,即使不是很许多。图表轴都是对数的:

comparison chart http://daubmeier.de/philip/stackoverflow/radixsort_vs_arraysort.png

答案 1 :(得分:1)

关于如何在浮点数上执行基数排序有一个很好的解释: http://www.codercorner.com/RadixSortRevisited.htm

如果您的所有值都是正数,则可以使用二进制表示法;该链接解释了如何处理负值。

答案 2 :(得分:1)

您可以使用unsafe块来对float *进行memcpy或别名,以uint *提取位。

答案 3 :(得分:1)

与Philip Daubmeiers最初将grouplength设置为8相比,通过进行一些精美的转换和交换数组而不是复制此版本,对于10M数字,其速度提高了2倍。对于该arraysize,它的速度比Array.Sort快3倍。

 static public void RadixSortFloat(this float[] array, int arrayLen = -1)
        {
            // Some use cases have an array that is longer as the filled part which we want to sort
            if (arrayLen < 0) arrayLen = array.Length;
            // Cast our original array as long
            Span<float> asFloat = array;
            Span<int> a = MemoryMarshal.Cast<float, int>(asFloat);
            // Create a temp array
            Span<int> t = new Span<int>(new int[arrayLen]);

            // set the group length to 1, 2, 4, 8 or 16 and see which one is quicker
            int groupLength = 8;
            int bitLength = 32;

            // counting and prefix arrays
            // (dimension is 2^r, the number of possible values of a r-bit number) 
            var dim = 1 << groupLength;
            int groups = bitLength / groupLength;
            if (groups % 2 != 0) throw new Exception("groups must be even so data is in original array at end");
            var count = new int[dim];
            var pref = new int[dim];
            int mask = (dim) - 1;
            int negatives = 0, positives = 0;

            // counting elements of the 1st group incuding negative/positive
            for (int i = 0; i < arrayLen; i++)
            {
                if (a[i] < 0) negatives++;
                count[(a[i] >> 0) & mask]++;
            }
            positives = arrayLen - negatives;

            int c;
            int shift;
            for (c = 0, shift = 0; c < groups - 1; c++, shift += groupLength)
            {
                CalcPrefixes();
                var nextShift = shift + groupLength;
                //
                for (var i = 0; i < arrayLen; i++)
                {
                    var ai = a[i];
                    // Get the right index to sort the number in
                    int index = pref[( ai >> shift) & mask]++;
                    count[( ai>> nextShift) & mask]++;
                    t[index] =  ai;
                }

                // swap the arrays and start again until the last group 
                var temp = a;
                a = t;
                t = temp;
            }

            // Last round
            CalcPrefixes();
            for (var i = 0; i < arrayLen; i++)
            {
                var ai = a[i];
                // Get the right index to sort the number in
                int index = pref[( ai >> shift) & mask]++;
                // We're in the last (most significant) group, if the
                // number is negative, order them inversely in front
                // of the array, pushing positive ones back.
                if ( ai < 0) index = positives - (index - negatives) - 1; else index += negatives;
                //
                t[index] =  ai;
            }

            void CalcPrefixes()
            {
                pref[0] = 0;
                for (int i = 1; i < dim; i++)
                {
                    pref[i] = pref[i - 1] + count[i - 1];
                    count[i - 1] = 0;
                }
            }
        }

答案 4 :(得分:0)

我认为最好的选择是,如果值不太接近并且有合理的精度要求,您可以使用小数点前后的实际浮点数来进行排序。

例如,你可以使用前4个小数(不管是0还是不是)来进行排序。