Vowpal Wabbit Logistic回归

时间:2014-11-09 22:02:45

标签: machine-learning logistic-regression vowpalwabbit

我正在使用Vowpal Wabbit对具有25个功能和4800万个实例的数据集执行逻辑回归。我对当前的预测值有疑问。它应该在0或1之内。

average    since         example     example  current  current  current
loss       last          counter      weight    label  predict features
0.693147   0.693147            1         1.0  -1.0000   0.0000       24
0.419189   0.145231            2         2.0  -1.0000  -1.8559       24
0.235457   0.051725            4         4.0  -1.0000  -2.7588       23
6.371911   12.508365           8         8.0  -1.0000  -3.7784       24
3.485084   0.598258           16        16.0  -1.0000  -2.2767       24
1.765249   0.045413           32        32.0  -1.0000  -2.8924       24
1.017911   0.270573           64        64.0  -1.0000  -3.0438       25
0.611419   0.204927          128       128.0  -1.0000  -3.1539       25
0.469127   0.326834          256       256.0  -1.0000  -1.6101       23
0.403473   0.337820          512       512.0  -1.0000  -2.8843       25
0.337348   0.271222         1024      1024.0  -1.0000  -2.5209       25
0.328909   0.320471         2048      2048.0  -1.0000  -2.0732       25
0.309401   0.289892         4096      4096.0  -1.0000  -2.7639       25
0.291447   0.273492         8192      8192.0  -1.0000  -2.5978       24
0.287428   0.283409        16384     16384.0  -1.0000  -3.1774       25
0.287249   0.287071        32768     32768.0  -1.0000  -2.7770       24
0.282737   0.278224        65536     65536.0  -1.0000  -1.9070       25
0.278517   0.274297       131072    131072.0  -1.0000  -3.3813       24
0.291475   0.304433       262144    262144.0   1.0000  -2.7975       23
0.324553   0.357630       524288    524288.0  -1.0000  -0.8995       24
0.373086   0.421619      1048576   1048576.0  -1.0000  -1.2076       24
0.422605   0.472125      2097152   2097152.0   1.0000  -1.4907       25
0.476046   0.529488      4194304   4194304.0  -1.0000  -1.8591       25
0.476627   0.477208      8388608   8388608.0  -1.0000  -2.0037       23
0.446556   0.416485     16777216  16777216.0  -1.0000  -0.9915       24
0.422831   0.399107     33554432  33554432.0  -1.0000  -1.9549       25
0.428316   0.433801     67108864  67108864.0  -1.0000  -0.6376       24
0.425511   0.422705    134217728 134217728.0  -1.0000  -0.4094       24
0.425185   0.424860    268435456 268435456.0  -1.0000  -1.1529       24
0.426747   0.428309    536870912 536870912.0  -1.0000  -2.7468       25

1 个答案:

答案 0 :(得分:12)

预测范围在[-50,+ 50](理论上是任何实数,但Vowpal Wabbit将其截断为[-50,+ 50])。

要将它们转换为{-1,+ 1},请使用--binary。正面预测简单地映射到+1,负面映射到-1。

要将它们转换为[0,+ 1],请使用--link=logistic。 这使用logistic function 1 /(1 + exp(-x))。 如果要将数字解释为概率,也应使用--loss_function=logistic

要将它们转换为[-1,+ 1],请使用--link=glf1。 这使用公式2 /(1 + exp(-x)) - 1(限制为1的广义逻辑函数)。