感知器,网络瘫痪

时间:2014-11-09 18:51:00

标签: objective-c neural-network perceptron

我试图在Objective-C上实现perceptron。现在我面临的问题是,在一些随机数量的时期之后,当误差趋于最小或最大时,网络瘫痪,并且在一些更多的时期之后,所有权重变得非常大或非常小,并且网络的输出和传播变为NaN。可能是什么问题?

我的代码在这里,主要方法是学习: Neuron.h

@interface Neuron : NSObject <NSCoding>
@property (nonatomic) double output;
@property (strong,nonatomic) NSMutableArray *weights;
@property (nonatomic) double propagation;
@end  

Web.h

#import "Neuron.h"
@interface Web : NSObject
@property (strong,nonatomic) NSMutableArray *arrayOfLayers;
-(void)setupWebWithNumberOfNeutrons:(NSInteger)number inputArray:(NSArray*)input;
-(void)addToLearningData:(NSArray *)array;
-(void)saveLearningArrayWithPath:(NSString *)path;
-(void)learn;
-(void)setupWeb;
@end

Web.m

@interface Web() <NSCoding>

@property (nonatomic) NSInteger numberOfHiddenLayerNeutrons;
@property (nonatomic) double output;
@property (nonatomic) double propagation;
@property (nonatomic) double answer;
@property (strong,nonatomic) NSMutableArray *learningArray;
@property (strong,nonatomic) NSMutableArray *learningData;

@property (strong,nonatomic) NSMutableArray *epocheLearningArrays;
@property (strong,nonatomic) NSMutableArray *epocheTestingArrays;
@end

const NSInteger kNumberOfHiddenNeurons = 20;
const NSInteger kNumberOfEpocheLearningArray = 70;
const NSInteger kMaxEpocheCount = 100;
@implementation Web


#pragma mark - Properties


-(NSMutableArray *)learningArray
{
    if (!_learningArray) {
        _learningArray = [[NSMutableArray alloc] init];
    }
    return _learningArray;
}
-(NSMutableArray *)learningData {
    if (!_learningData) {
            _learningData = [NSMutableArray array];
    }
    return _learningData;
}
-(NSMutableArray *)epocheLearningArrays {
    if (!_epocheLearningArrays) {
        _epocheLearningArrays = [NSMutableArray array];
    }
    return _epocheLearningArrays;
}
-(NSMutableArray *)epocheTestingArrays {
    if (!_epocheTestingArrays) {
        _epocheTestingArrays = [NSMutableArray array];
    }
    return _epocheTestingArrays;
}

-(NSMutableArray *)arrayOfLayers
{
    if (!_arrayOfLayers) {
        _arrayOfLayers = [[NSMutableArray alloc] init];
    }
    return _arrayOfLayers;
}


-(void)addToLearningData:(NSArray *)array
{
    [self.learningData addObject:array];
    [self saveLearningDataWithPath:nil];
}




#pragma mark - Setup



-(void)setupWeb {
    NSMutableArray *arrayOfInputNeurons = [[NSMutableArray alloc] init];
    for (int i=0; i < 100; i++) {
        Neuron *neuron = [[Neuron alloc] init];
        [arrayOfInputNeurons addObject:neuron];
    }
    [self.arrayOfLayers addObject:arrayOfInputNeurons];
    NSMutableArray *arrayOfFirstHiddenLayerNeurons = [[NSMutableArray alloc] init];
    for (int i=0; i < kNumberOfHiddenNeurons; i++) {
        Neuron *neuron = [[Neuron alloc] init];
        [arrayOfFirstHiddenLayerNeurons addObject:neuron];
    }
    [self.arrayOfLayers addObject:arrayOfFirstHiddenLayerNeurons];
    NSMutableArray *arrayOfSeconHiddenLayerNeurons = [[NSMutableArray alloc] init];
    Neuron *outputNeuron = [[Neuron alloc] init];
    [arrayOfSeconHiddenLayerNeurons addObject:outputNeuron];
    [self.arrayOfLayers addObject:arrayOfSeconHiddenLayerNeurons];
    [self setRandomWeights];
}
-(void)setupWebWithNumberOfNeutrons:(NSInteger)number inputArray:(NSArray*)input
{
    self.output = 1;
    NSMutableArray *arrayOfInputNeurons = [[NSMutableArray alloc] init];
    for (NSNumber *state in input) {
        Neuron *neuron = [[Neuron alloc] init];
        neuron.output = state.intValue;
        [arrayOfInputNeurons addObject:neuron];
    }
    [self.arrayOfLayers addObject:arrayOfInputNeurons];
    NSMutableArray *arrayOfFirstHiddenLayerNeurons = [[NSMutableArray alloc] init];
    for (int i=0; i < number; i++) {
        Neuron *neuron = [[Neuron alloc] init];
        [arrayOfFirstHiddenLayerNeurons addObject:neuron];
    }
    [self.arrayOfLayers addObject:arrayOfFirstHiddenLayerNeurons];
    NSMutableArray *arrayOfSeconHiddenLayerNeurons = [[NSMutableArray alloc] init];
    Neuron *outputNeuron = [[Neuron alloc] init];
    [arrayOfSeconHiddenLayerNeurons addObject:outputNeuron];
    [self.arrayOfLayers addObject:arrayOfSeconHiddenLayerNeurons];
    if (!self.propagation) {
        [self setRandomWeights];
    }
    [self forwardPass];
    Neuron *neuron = (Neuron *)self.arrayOfLayers[2][0];
    self.answer = -1;
    [self calculatePropagation:neuron];
    [self backPass];
    [self resetWeights];
}
-(void)setRandomWeights
{
    for (NSInteger i=0; i<[self.arrayOfLayers count]-1; i++) {
        for (Neuron *neuron in self.arrayOfLayers[i]) {
            NSMutableArray *weights = [NSMutableArray array];
            for (NSInteger j=0; j<[self.arrayOfLayers[i+1] count]; j++) {
                [weights addObject:@((((float) rand() / RAND_MAX) * 1) -0.5)];
            }
            neuron.weights = weights;
        }
    }
}

-(void)setInputLayer {
    for (int i=0; i<100; i++) {
        Neuron *neuron = self.arrayOfLayers[0][i];
        NSNumber *output = self.learningArray[i];
        neuron.output = output.doubleValue;
    }
}
#pragma mark - Algorythm



-(void)learn {
    double currentAnswer;
    NSMutableArray *shuffledData = [self.learningData mutableCopy];
    [self shuffleArray:shuffledData];
    [self setRandomWeights];
    int countOfLearningArray = (int) (0.7*[self.learningData count]);
    for (int k=0; k<countOfLearningArray; k++) {
        [self.epocheLearningArrays addObject:[shuffledData objectAtIndex:k]];
    }
    for (int k=countOfLearningArray; k<[shuffledData count]; k++) {
        [self.epocheTestingArrays addObject:[shuffledData objectAtIndex:k]];
    }
    NSNumber *learningPropagation=@(-100);
    NSNumber *testPropagation=@(100);
    NSInteger epocheCount=0;
    while (fabs(learningPropagation.doubleValue-testPropagation.doubleValue)>0.001 && epocheCount<kMaxEpocheCount) {
        learningPropagation = @0;
        for (NSArray *learningArray in self.epocheLearningArrays) {
            self.learningArray = [learningArray mutableCopy];
            NSNumber *lastObject = [learningArray lastObject];
            currentAnswer = lastObject.doubleValue;
            [self.learningArray removeLastObject];
            self.answer = currentAnswer;
            [self setInputLayer];
            [self forwardPass];
            [self calculatePropagation:self.arrayOfLayers[2][0]];
            if (fabs(self.output-self.answer)>0.0001) {
                [self backPass];
                [self resetWeights];
            }
            learningPropagation = @(learningPropagation.doubleValue + self.propagation);
        }
        learningPropagation = @(learningPropagation.doubleValue/[self.epocheLearningArrays count]);
        testPropagation = @0;
        for (NSArray *testArray in self.epocheTestingArrays) {
            self.learningArray = [testArray mutableCopy];
            NSNumber *lastObject = [testArray lastObject];
            currentAnswer = lastObject.doubleValue;
            [self.learningArray removeLastObject];
            self.answer = currentAnswer;
            [self setInputLayer];
            [self forwardPass];
            [self calculatePropagation:self.arrayOfLayers[2][0]];
            testPropagation = @(testPropagation.doubleValue + self.propagation);
        }
        testPropagation = @(testPropagation.doubleValue/[self.epocheTestingArrays count]);
        epocheCount++;
    }
}
-(void)calculatePropagation:(Neuron *)neuron
{
    self.propagation= 0.5*pow((neuron.output - self.answer), 2);
}
#define alpha 0.5
-(void)forwardPass
{
    for (int i=0; i<[self.arrayOfLayers count]-1; i++) {
        for (int j=0; j<[self.arrayOfLayers[i+1] count]; j++) {
            double sum=0;
            for (int z=0; z<[self.arrayOfLayers[i] count]; z++) {
                Neuron *neuron = (Neuron *)self.arrayOfLayers[i][z];
                sum+=[(NSNumber *)neuron.weights[j] doubleValue]*neuron.output;
            }
            Neuron *neuron = (Neuron *)self.arrayOfLayers[i+1][j];
            neuron.output = tanh(alpha*sum);
        }
    }
    Neuron *outputNeuron = self.arrayOfLayers[2][0];
    self.output = outputNeuron.output;
}
-(void)backPass
{
    for (NSInteger i=[self.arrayOfLayers count]-1; i>=0; i--) {
        for (int j=0; j<[self.arrayOfLayers[i] count]; j++) {
            double temp=0;
            if (i==[self.arrayOfLayers count]-1) {
                Neuron *neuron = (Neuron *)self.arrayOfLayers[i][j];
                temp = neuron.output-self.answer;
                neuron.propagation = temp;
            } else {
                for (int z=0; z<[self.arrayOfLayers[i+1] count]; z++) {
                    Neuron *neuron1 = (Neuron *)self.arrayOfLayers[i+1][z];
                    Neuron *neuron2 = (Neuron *)self.arrayOfLayers[i][j];
                    temp = neuron1.propagation * [(NSNumber *)neuron2.weights[z] doubleValue];
                }
                Neuron *neuron = (Neuron *)self.arrayOfLayers[i][j];
                neuron.propagation = temp;
            }
        }
    }
}
#define gamma 0.01
-(void)resetWeights
{
    for (int i=0; i<[self.arrayOfLayers count]-1; i++) {
        for (int j=0; j<[self.arrayOfLayers[i] count]; j++) {
            Neuron *neuron = (Neuron *)self.arrayOfLayers[i][j];
            for (int z=0; z<[self.arrayOfLayers[i+1] count]; z++) {
                neuron.weights[z] = @([(NSNumber *)neuron.weights[z] doubleValue]- gamma * neuron.propagation * neuron.output);
            }
        }
    }
}

-(void)shuffleArray:(NSMutableArray *)array {
    NSUInteger count = [array count];
    for (NSUInteger i = 0; i < count; ++i) {
        NSInteger remainingCount = count - i;
        NSInteger exchangeIndex = i + arc4random_uniform((u_int32_t )remainingCount);
        [array exchangeObjectAtIndex:i withObjectAtIndex:exchangeIndex];
    }
}

1 个答案:

答案 0 :(得分:0)

错误发生在方法resetWeights中。解决方案:

-(void)resetWeights
{
    for (int i=0; i<[self.arrayOfLayers count]-1; i++) {
        for (int j=0; j<[self.arrayOfLayers[i] count]; j++) {
            Neuron *neuron = (Neuron *)self.arrayOfLayers[i][j];
            for (int z=0; z<[self.arrayOfLayers[i+1] count]; z++) {
                Neuron *nextLayerNeuron = (Neuron *)self.arrayOfLayers[i+1][z];
                neuron.weights[z] = @([(NSNumber *)neuron.weights[z] doubleValue]- gamma * nextLayerNeuron.propagation * neuron.output);
            }
        }
    }
}