Haskell:生成组合的技术比较

时间:2014-11-04 04:16:11

标签: performance haskell lazy-evaluation

我之前正在做一些99 Haskell Problems,我认为练习27(“编写一个函数来枚举可能的组合”)很有意思,因为它是一个简单的概念,它适用于多个实现。

我对相对效率感到好奇所以我决定运行几个不同的实现 - 结果在下表中。 (供参考:在VirtualBox上运行的LXDE(Ubuntu 14.04)中的Emacs bash ansi-term; Thinkpad X220; 8gb RAM,i5 64bit 2.4ghz。)


TL; DR:

(i)为什么组合生成技术#7和#8(来自下表;代码包含在帖子底部)比其余的快得多?
  (ii)另外,Bytes栏中的数字实际代表什么?


(i)这很奇怪,因为函数#7通过过滤powerset(比组合列表更大)来工作;我怀疑这是懒惰的工作,即,这是最有效地利用我们只询问列表长度而不是列表本身这一事实的功能。 (另外,它的“内存使用率”低于其他功能的内存使用率,但是,我再也不确定显示与内存相关的统计信息。)

关于功能#8:感谢Bergi的快速实施,并感谢user5402建议添加。仍然试图围绕这一个的速度差异保持领先。

(ii)运行Bytes命令后GHCi报告:set +s列中的数字;它们显然不代表最大内存使用量,因为我只有~25GB的RAM +免费高清空间。)?

enter image description here

代码:

import Data.List

--algorithms to generate combinations
--time required to compute the following: length $ 13 "abcdefghijklmnopqrstuvwxyz"

--(90.14 secs, 33598933424 bytes)
combDC1 :: (Eq a) => Int -> [a] -> [[a]]
combDC1 n xs = filter (/= []) $ combHelper n n xs []

combHelper :: Int -> Int -> [a] -> [a] -> [[a]]
combHelper n _ []        chosen           = if length chosen == n
                                               then [chosen]
                                               else [[]]
combHelper n i remaining chosen
  | length chosen == n = [chosen]
  | n - length chosen > length remaining = [[]]                     
  | otherwise = combHelper n (i-1) (tail remaining) ((head remaining):chosen) ++
                combHelper n i (tail remaining) chosen

--(167.63 secs, 62756587760 bytes)
combSoln1 :: Int -> [a] -> [([a],[a])]
combSoln1 0 xs = [([],xs)]
combSoln1 n [] = []
combSoln1 n (x:xs) = ts ++ ds
  where
    ts = [ (x:ys,zs) | (ys,zs) <- combSoln1 (n-1) xs ]
    ds = [ (ys,x:zs) | (ys,zs) <- combSoln1 n     xs ]

--(71.40 secs,  30480652480 bytes)
combSoln2 :: Int -> [a] -> [[a]]
combSoln2 0 _  = [ [] ]
combSoln2 n xs = [ y:ys | y:xs' <- tails xs
                           , ys <- combSoln2 (n-1) xs']

--(83.75 secs, 46168207528 bytes)
combSoln3 :: Int -> [a] -> [[a]]
combSoln3 0 _  = return []
combSoln3 n xs = do
  y:xs' <- tails xs
  ys <- combSoln3 (n-1) xs'
  return (y:ys)

--(92.34 secs, 40541644232 bytes)
combSoln4 :: Int -> [a] -> [[a]]
combSoln4 0 _ = [[]]
combSoln4 n xs = [ xs !! i : x | i <- [0..(length xs)-1] 
                               , x <- combSoln4 (n-1) (drop (i+1) xs) ]

--(90.63 secs, 33058536696 bytes)
combSoln5 :: Int -> [a] -> [[a]]
combSoln5 _ [] = [[]]
combSoln5 0 _  = [[]]
combSoln5 k (x:xs) = x_start ++ others
    where x_start = [ x : rest | rest <- combSoln5 (k-1) xs ]
          others  = if k <= length xs then combSoln5 k xs else []


--(61.74 secs, 33053297832 bytes)                                                                         
combSoln6 :: Int -> [a] -> [[a]]
combSoln6 0 _ = [[]]
combSoln6 _ [] = []
combSoln6 n (x:xs) = (map (x:) (combSoln6 (n-1) xs)) ++ (combSoln6 n xs)


--(8.41 secs, 10785499208 bytes)
combSoln7 k ns = filter ((k==).length) (subsequences ns)


--(3.15 secs, 2889815872 bytes)
subsequencesOfSize :: Int -> [a] -> [[a]]
subsequencesOfSize n xs = let l = length xs
                          in if n>l then [] else subsequencesBySize xs !! (l-n)
 where
   subsequencesBySize [] = [[[]]]
   subsequencesBySize (x:xs) = let next = subsequencesBySize xs
                               in zipWith (++) ([]:next) (map (map (x:)) next ++ [[]])                 

2 个答案:

答案 0 :(得分:2)

您还应该测试本SO答案中的算法:

subsequences of length n from list performance

subsequencesOfSize :: Int -> [a] -> [[a]]
subsequencesOfSize n xs = let l = length xs
                          in if n>l then [] else subsequencesBySize xs !! (l-n)
 where
   subsequencesBySize [] = [[[]]]
   subsequencesBySize (x:xs) = let next = subsequencesBySize xs
                             in zipWith (++) ([]:next) (map (map (x:)) next ++ [[]])

在我的机器上,我从ghci获得以下时间和内存使用情况:

ghci> length $ combSoln7   13 "abcdefghijklmnopqrstuvwxyz"
10400600
(13.42 secs, 10783921008 bytes)

ghci> length $ subsequencesOfSize  13 "abcdefghijklmnopqrstuvwxyz"
10400600
(6.52 secs, 2889807480 bytes)

答案 1 :(得分:0)

fact :: (Integral a) => a -> a
fact n = product [1..n]

ncombs n k = -- to evaluate number of combinations
    let n' = toInteger n
        k' = toInteger k
    in div (fact n') ((fact k') * (fact (n' - k')))

combinations :: Int -> [a] -> [[a]]
combinations 0 xs = [[]]
combinations 1 xs = [[x] | x <- xs]
combinations n xs =
    let ps = reverse [0..n - 1]
        inc (p:[])
            | pn < length xs = pn:[]
            | otherwise = p:[]
            where pn = p + 1
        inc (p:ps)
            | pn < length xs = pn:ps
            | (head psn) < length xs = inc ((head psn):psn)
            | otherwise = (p:ps)
            where pn = p + 1
                  psn = inc ps
        amount = ncombs (length xs) n
        pointers = take (fromInteger amount) (iterate inc ps)
        c' xs ps = map (xs!!) (reverse ps)
    in map (c' xs) pointers

我正在学习Haskell并发现了相对较快的实现。我在类型系统上遇到了困难,其中一些函数需要Ints和一些小数和一些整数。在我的计算机上,此处提供的最快解决方案大约需要6.1秒才能运行,而我的需要3.5到2.9秒。