在OpenCV中将Mat转换为Array / Vector

时间:2014-10-31 19:03:32

标签: c++ arrays opencv vector synthesis

我是OpenCV的新手。最近,我发现OpenCV函数从Mat转换为Array很麻烦。我使用OpenCV API中提供的.ptr和.at方法进行了研究,但是我无法获得正确的数据。我希望从Mat到Array直接转换(如果可用,如果没有,则转换为Vector)。我需要OpenCV函数,因为代码必须在Vivado HLS中进行高级综合。请帮忙。

9 个答案:

答案 0 :(得分:75)

如果Mat mat的内存是连续的(其所有数据都是连续的),您可以直接将其数据转换为一维数组:

std::vector<uchar> array(mat.rows*mat.cols);
if (mat.isContinuous())
    array = mat.data;

否则,您必须逐行获取其数据,例如到2D数组:

uchar **array = new uchar*[mat.rows];
for (int i=0; i<mat.rows; ++i)
    array[i] = new uchar[mat.cols];

for (int i=0; i<mat.rows; ++i)
    array[i] = mat.ptr<uchar>(i);

更新:如果你使用的是std::vector会更容易,你可以这样做:

std::vector<uchar> array;
if (mat.isContinuous()) {
  // array.assign(mat.datastart, mat.dataend); // <- has problems for sub-matrix like mat = big_mat.row(i)
  array.assign(mat.data, mat.data + mat.total());
} else {
  for (int i = 0; i < mat.rows; ++i) {
    array.insert(array.end(), mat.ptr<uchar>(i), mat.ptr<uchar>(i)+mat.cols);
  }
}

p.s:对于其他类型的cv::Mat,例如CV_32F,你应该这样做:

std::vector<float> array;
if (mat.isContinuous()) {
  // array.assign((float*)mat.datastart, (float*)mat.dataend); // <- has problems for sub-matrix like mat = big_mat.row(i)
  array.assign((float*)mat.data, (float*)mat.data + mat.total());
} else {
  for (int i = 0; i < mat.rows; ++i) {
    array.insert(array.end(), mat.ptr<float>(i), mat.ptr<float>(i)+mat.cols);
  }
}

答案 1 :(得分:11)

这是另一种可能的解决方案,假设矩阵有一列(您可以通过reshape将原始Mat重新整形为一列Mat):

Mat matrix= Mat::zeros(20, 1, CV_32FC1);
vector<float> vec;
matrix.col(0).copyTo(vec);

答案 2 :(得分:3)

您可以将其直接放入数组,而不是逐行获取图像。对于 CV_8U 类型的图像,您可以使用字节数组,对于其他类型,请检查here

Mat img; // Should be CV_8U for using byte[]
int size = (int)img.total() * img.channels();
byte[] data = new byte[size];
img.get(0, 0, data); // Gets all pixels

答案 3 :(得分:3)

此处提供的示例均不适用于通用情况,即N维矩阵。任何使用&#34;行&#34;假定只有列和行,4维矩阵可能有更多。

下面是一些将非连续N维矩阵复制到连续内存流中的示例代码 - 然后将其转换回Cv :: Mat

#include <iostream>
#include <cstdint>
#include <cstring>
#include <opencv2/opencv.hpp>

int main(int argc, char**argv)
{
    if ( argc != 2 )
    {
        std::cerr << "Usage: " << argv[0] << " <Image_Path>\n";
        return -1;
    }
    cv::Mat origSource = cv::imread(argv[1],1);

    if (!origSource.data) {
        std::cerr << "Can't read image";
        return -1;
    }

    // this will select a subsection of the original source image - WITHOUT copying the data
    // (the header will point to a region of interest, adjusting data pointers and row step sizes)
    cv::Mat sourceMat = origSource(cv::Range(origSource.size[0]/4,(3*origSource.size[0])/4),cv::Range(origSource.size[1]/4,(3*origSource.size[1])/4));

    // correctly copy the contents of an N dimensional cv::Mat
    // works just as fast as copying a 2D mat, but has much more difficult to read code :)
    // see http://stackoverflow.com/questions/18882242/how-do-i-get-the-size-of-a-multi-dimensional-cvmat-mat-or-matnd
    // copy this code in your own cvMat_To_Char_Array() function which really OpenCV should provide somehow...
    // keep in mind that even Mat::clone() aligns each row at a 4 byte boundary, so uneven sized images always have stepgaps
    size_t totalsize = sourceMat.step[sourceMat.dims-1];
    const size_t rowsize = sourceMat.step[sourceMat.dims-1] * sourceMat.size[sourceMat.dims-1];
    size_t coordinates[sourceMat.dims-1] = {0};
    std::cout << "Image dimensions: ";
    for (int t=0;t<sourceMat.dims;t++)
    {
        // calculate total size of multi dimensional matrix by multiplying dimensions
        totalsize*=sourceMat.size[t];
        std::cout << (t>0?" X ":"") << sourceMat.size[t];
    }
    // Allocate destination image buffer
    uint8_t * imagebuffer = new uint8_t[totalsize];
    size_t srcptr=0,dptr=0;
    std::cout << std::endl;
    std::cout << "One pixel in image has " << sourceMat.step[sourceMat.dims-1] << " bytes" <<std::endl;
    std::cout << "Copying data in blocks of " << rowsize << " bytes" << std::endl ;
    std::cout << "Total size is " << totalsize << " bytes" << std::endl;
    while (dptr<totalsize) {
        // we copy entire rows at once, so lowest iterator is always [dims-2]
        // this is legal since OpenCV does not use 1 dimensional matrices internally (a 1D matrix is a 2d matrix with only 1 row)
        std::memcpy(&imagebuffer[dptr],&(((uint8_t*)sourceMat.data)[srcptr]),rowsize);
        // destination matrix has no gaps so rows follow each other directly
        dptr += rowsize;
        // src matrix can have gaps so we need to calculate the address of the start of the next row the hard way
        // see *brief* text in opencv2/core/mat.hpp for address calculation
        coordinates[sourceMat.dims-2]++;
        srcptr = 0;
        for (int t=sourceMat.dims-2;t>=0;t--) {
            if (coordinates[t]>=sourceMat.size[t]) {
                if (t==0) break;
                coordinates[t]=0;
                coordinates[t-1]++;
            }
            srcptr += sourceMat.step[t]*coordinates[t];
        }
   }

   // this constructor assumes that imagebuffer is gap-less (if not, a complete array of step sizes must be given, too)
   cv::Mat destination=cv::Mat(sourceMat.dims, sourceMat.size, sourceMat.type(), (void*)imagebuffer);

   // and just to proof that sourceImage points to the same memory as origSource, we strike it through
   cv::line(sourceMat,cv::Point(0,0),cv::Point(sourceMat.size[1],sourceMat.size[0]),CV_RGB(255,0,0),3);

   cv::imshow("original image",origSource);
   cv::imshow("partial image",sourceMat);
   cv::imshow("copied image",destination);
   while (cv::waitKey(60)!='q');
}

答案 4 :(得分:1)

byte * matToBytes(Mat image)
{
   int size = image.total() * image.elemSize();
   byte * bytes = new byte[size];  //delete[] later
   std::memcpy(bytes,image.data,size * sizeof(byte));
}

答案 5 :(得分:1)

您可以使用迭代器:

Mat matrix = ...;

std::vector<float> vec(matrix.begin<float>(), matrix.end<float>());

答案 6 :(得分:0)

cv::Mat m;
m.create(10, 10, CV_32FC3);

float *array = (float *)malloc( 3*sizeof(float)*10*10 );
cv::MatConstIterator_<cv::Vec3f> it = m.begin<cv::Vec3f>();
for (unsigned i = 0; it != m.end<cv::Vec3f>(); it++ ) {
    for ( unsigned j = 0; j < 3; j++ ) {
        *(array + i ) = (*it)[j];
        i++;
    }
}

Now you have a float array. In case of 8 bit, simply change float to uchar and Vec3f to Vec3b and CV_32FC3 to CV_8UC3

答案 7 :(得分:0)

可以分两行完成:)

要排列的垫子

uchar * arr = image.isContinuous()? image.data: image.clone().data;
uint length = image.total()*image.channels();

载体到载体

cv::Mat flat = image.reshape(1, image.total()*image.channels());
std::vector<uchar> vec = image.isContinuous()? flat : flat.clone();

两者均可为任何普通cv::Mat工作。

解释性示例

    cv::Mat image;
    image = cv::imread(argv[1], cv::IMREAD_UNCHANGED);   // Read the file
    cv::namedWindow("cvmat", cv::WINDOW_AUTOSIZE );// Create a window for display.
    cv::imshow("cvmat", image );                   // Show our image inside it.

    // flatten the mat.
    uint totalElements = image.total()*image.channels(); // Note: image.total() == rows*cols.
    cv::Mat flat = image.reshape(1, totalElements); // 1xN mat of 1 channel, O(1) operation
    if(!image.isContinuous()) {
        flat = flat.clone(); // O(N),
    }
    // flat.data is your array pointer
    auto * ptr = flat.data; // usually, its uchar*
    // You have your array, its length is flat.total() [rows=1, cols=totalElements]
    // Converting to vector
    std::vector<uchar> vec(flat.data, flat.data + flat.total());
    // Testing by reconstruction of cvMat
    cv::Mat restored = cv::Mat(image.rows, image.cols, image.type(), ptr); // OR vec.data() instead of ptr
    cv::namedWindow("reconstructed", cv::WINDOW_AUTOSIZE);
    cv::imshow("reconstructed", restored);

    cv::waitKey(0);     

扩展说明:

如果

Mat使用其构造函数之一创建,或者使用Mat或类似方法复制到另一个clone()中,则存储为连续的内存块。要转换为数组或vector,我们需要它的第一个块的地址和数组/向量的长度。

指向内部存储块的指针

Mat::data是指向其内存的公共uchar指针。
但是此内存可能不是连续的。如其他答案所述,我们可以检查mat.data是否指向连续内存或不使用mat.isContinous()。除非您需要极高的效率,否则可以在O(N)时间中使用mat.clone()获得连续的垫子版本。 (N =所有通道中的元素数)。但是,在处理由cv::imread()读取的图像时,我们很少会遇到不连续的垫子。

数组/向量的长度

问:row*cols*channels应该正确吗?
答:并非总是如此。可以是rows*cols*x*y*channels
问:应该等于mat.total()吗?
答:适用于单通道垫。但不适用于多通道垫
由于OpenCV的文档不完善,因此数组/向量的长度有些棘手。我们有Mat::size个公共成员,该成员仅存储单个Mat 没有渠道的尺寸。对于RGB图像,Mat.size = [rows,cols]而不是[rows,cols,channels]。 Mat.total()返回垫子的单个通道中的元素总数,该元素等于mat.size中值的乘积。对于RGB图像,total() = rows*cols。因此,对于任何通用Mat,连续存储块的长度将为mat.total()*mat.channels()

从数组/向量重构Mat

除了数组/矢量,我们还需要原始Mat的mat.size [array like]和mat.type() [int]。然后,使用采用数据指针的构造函数之一,我们可以获得原始Mat。不需要可选的step参数,因为我们的数据指针指向连续内存。我使用此方法在nodejs和C ++之间将Mat作为Uint8Array传递。这样可以避免使用node-addon-api为cv :: Mat编写C ++绑定。

参考文献:

答案 8 :(得分:0)

如果你知道你的 img 是 3 通道,那么你可以试试这个代码

 Vec3b* dados = new Vec3b[img.rows*img.cols];
    for (int i = 0; i < img.rows; i++)
        for(int j=0;j<img.cols; j++)
            dados[3*i*img.cols+j] =img.at<Vec3b>(i,j);

如果你想检查 (i,j) vec3b 你可以写

std::cout << (Vec3b)img.at<Vec3b>(i,j) << std::endl;
    std::cout << (Vec3b)dados[3*i*img.cols+j] << std::endl;