我有一个名为conf_mat
的数据框,其中包含两列,包括每个对象中的预测值和参考值。我在这个数据框中有20个对象。
dput(Conf_mat)
structure(list(Predicted = c(100, 200, 200, 100, 100, 200, 200,
200, 100, 200, 500, 100, 100, 100, 100, 100, 100, 100, 500, 200
), Reference = c(600, 200, 200, 200, 200, 200, 200, 200, 500,
500, 500, 200, 200, 200, 200, 200, 200, 200, 200, 200)), .Names = c("Predicted",
"Reference"), row.names = c(NA, 20L), class = "data.frame")
我想用这种结构从这个表中创建一个混淆矩阵,它将由Conf_mat
数据帧填充。这将允许我计算我的分类的准确评估。谢谢你的帮助。
100 200 300 400 500 600
100 NA NA NA NA NA NA
200 NA NA NA NA NA NA
300 NA NA NA NA NA NA
400 NA NA NA NA NA NA
500 NA NA NA NA NA NA
600 NA NA NA NA NA NA
答案 0 :(得分:0)
1)请尝试以下操作:
table(Conf_mat)
2)如果要强制显示级别100,200,...,600:
conf_mat_tab <- table(lapply(Conf_mat, factor, levels = seq(100, 600, 100)))
3)你也可以试试这个:
library(caret)
confusionMatrix(conf_mat_tab) # conf_mat_tab from (2)
给出:
Confusion Matrix and Statistics
Reference
Predicted 100 200 300 400 500 600
100 0 9 0 0 1 1
200 0 6 0 0 1 0
300 0 0 0 0 0 0
400 0 0 0 0 0 0
500 0 1 0 0 1 0
600 0 0 0 0 0 0
Overall Statistics
Accuracy : 0.35
95% CI : (0.1539, 0.5922)
No Information Rate : 0.8
P-Value [Acc > NIR] : 1
Kappa : 0.078
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: 100 Class: 200 Class: 300 Class: 400 Class: 500 Class: 600
Sensitivity NA 0.3750 NA NA 0.3333 0.00
Specificity 0.45 0.7500 1 1 0.9412 1.00
Pos Pred Value NA 0.8571 NA NA 0.5000 NaN
Neg Pred Value NA 0.2308 NA NA 0.8889 0.95
Prevalence 0.00 0.8000 0 0 0.1500 0.05
Detection Rate 0.00 0.3000 0 0 0.0500 0.00
Detection Prevalence 0.55 0.3500 0 0 0.1000 0.00
Balanced Accuracy NA 0.5625 NA NA 0.6373 0.50